山东科学

• 海洋科技与装备 •    

基于动态遗传算法的稀疏阵列优化方法研究

姚凤薇   

  1. 上海电子信息职业技术学院 通信与信息工程学院,上海 201411
  • 收稿日期:2025-04-30 接受日期:2025-05-18 上线日期:2025-12-09
  • 通信作者: 姚凤薇 E-mail:jojoyao@163.com
  • 作者简介:姚凤薇(1979—),女,博士,研究员,研究方向为天线及微波电路技术研究。
  • 基金资助:
    上海市自然科学基金 (17ZR1411100) ;上海电子信息职业技术学院高层次科研启动项目(CCC2023027)

Sparse Array Optimization Method using a Dynamic Genetic Algorithm

YAO Fengwei   

  1.  School of Communication and Information Engineering, Shanghai Technical Institute of Electronics and Information, Shanghai 201411, China
  • Received:2025-04-30 Accepted:2025-05-18 Online:2025-12-09
  • Contact: YAO Fengwei E-mail:jojoyao@163.com

摘要: 针对二维稀疏阵列的优化问题,提出了一种改进的动态遗传算法,旨在减少阵列元素数量的同时抑制副瓣电平。通过结合了迭代次数与种群适应度,提出了进化完成度指数,该指数能够更好地描述种群进化的完成度。基于完成度指数设计了一种可动态调整的交叉和变异算子,使得算法能够根据不同优化阶段的需求,灵活调整交叉变异概率,提升整体优化效果。与传统遗传算法相比,实验结果表明本方法在进行天线阵列稀疏优化时,能够有效降低峰值副瓣比3.9dB以上,展现了较强的适应性与稳定性。

关键词: 二维稀疏阵列, 遗传算法, 进化完成度指数, 动态参数, 副瓣抑制

Abstract: To address the optimization challenges associated with two-dimensional sparse arrays, this study proposes an improved dynamic genetic algorithm. This algorithm focuses on reducing the number of array elements while enhancing peak sidelobe suppression. This proposed algorithm introduces an evolutionary completion index that integrates the number of iterations and population fitness to accurately characterize the evolutionary progress of the population. In addition, according to this index, dynamically adjustable crossover and mutation operators are designed, which enable the algorithm to flexibly adjust crossover and mutation probabilities to satisfy the needs of different optimization stages, thereby improving the overall optimization performance. The experimental results revealed that compared with traditional genetic algorithms, the proposed algorithm can effectively suppress the peak sidelobe ratio by more than 3.9 dB in sparse array optimization, thereby exhibiting robust adaptability and stability across various sparsity levels.

Key words: two-dimensional sparse array, genetic algorithm, evolutionary completion index, dynamic parameters, sidelobe suppression

中图分类号: 

  • TN802

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0