山东科学 ›› 2023, Vol. 36 ›› Issue (4): 122-133.doi: 10.3976/j.issn.1002-4026.2023.04.015
收稿日期:
2022-10-12
出版日期:
2023-08-20
发布日期:
2023-08-03
通信作者:
*王霞(1975—),女,教授,研究方向为新型污染物分析关键技术、复杂环境样品前处理技术。Tel: 13210509129,E-mail: xia-w21cn0@163.com
作者简介:
徐蕾(1998—),女,硕士研究生,研究方向为固体废物处理与资源化利用工程。E-mail: xl374961746@163.com
基金资助:
XU Lei1(), ZHAO Rusong1, JING Chuanyong2, WANG Xia1,*(
)
Received:
2022-10-12
Online:
2023-08-20
Published:
2023-08-03
摘要:
评述了近几年不同环境介质中锑的形态分析方法,其中,电感耦合等离子体质谱法具有检出限低、灵敏度高、稳定性好、分析速度快等优点,在锑的形态分析领域受到越来越多的关注。在形态分析之前,从复杂基质中提取不同形态锑,并保持其价态的稳定性是关键,灵敏的检测技术与高效的样品前处理技术以及分离技术的融合,为解决这一问题提供了思路。近年来,联用技术已经广泛应用于大气、水体、土壤和沉积物等环境样品中锑形态的检测。最后,探讨了该领域面临的挑战并对其未来的发展方向进行了展望。
中图分类号:
徐蕾, 赵汝松, 景传勇, 王霞. 环境介质中锑形态分析技术的研究进展[J]. 山东科学, 2023, 36(4): 122-133.
XU Lei, ZHAO Rusong, JING Chuanyong, WANG Xia. Review on the analytical technique for antimony speciation in environmental media[J]. Shandong Science, 2023, 36(4): 122-133.
表1
环境样品中锑形态分析的前处理方法"
锑形态 | 前处理方法 | 萃取剂 | 样品 | 检出限 | 参考文献 |
---|---|---|---|---|---|
Sb(III) | SPE | APDC | 水 | 2.1 ng/L | [ |
Sb(III) | SPE | TPA-SG | 水 | 0.020 μg/L | [ |
Sb(III) | 在线SPE | NPC pro-MWCNT | 水 | 1.47 ng/L 0.52 ng/L | [ |
Sb(III) Sb(V) | 在线SPE | SiO2/Al2O3/SnO2 | 水 | 0.17 μg/L | [ |
Sb(III) | MSPE | Fe3O4@SiO2@CNFs | 水 | 0.13 μg/L | [ |
Sb(III) Sb(V) | MSPE | C8-Fe3O4@SiO2 | 水 | 0.001 μg/L 0.004 μg/L | [ |
Sb(III) | SPME | Fe3O4@Ag@MESNa | 水 | 0.02 μg/L | [ |
Sb(III) | SPME | POIP | 水 | 6 ng/L | [ |
Sb(III) | CPE | Triton X-114 | 水 | 0.06 μg/L | [ |
Sb(III) | DLLME | [P6,6,6,14]FeCl4 | 水 | 0.02 μg/L | [ |
Sb(III) | VAME | DES | 水、生物样品 | 5.6 ng/L | [ |
Sb(III) Sb(V) | DMSPE -DLLME | TDNFs, CHCl3 | 生物样品 | 0.019 ng/L 0.025 ng/L | [ |
Sb(III) Sb(V) | 微波萃取 | 0.1 mol/L草酸+20 mmol/L 抗坏血酸 | 土壤、沉积物 | 0.1 μg/L 0.2 μg/L | [ |
表2
光谱技术在锑形态分析中的应用"
锑形态 | 分析方法 | 样品 | 萃取剂 | 分离条件 | 检出限 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Sb(III) Sb(V) | ET- AAS | 水 | Fe3O4@ Ag@MESNa | 10%硝酸溶液1 mol/L, pH=9, 碳酸盐/碳酸氢盐缓冲溶液 | 0.02 μg/L | [ | ||||
Sb(III) | ET- AAS | 水 | 3.5%APDC+ 3.0%Triton X-114 | 3.0%L-半胱氨酸 | 0.06 μg/L | [ | ||||
Sb(III) | HG-AAS | 水、食品 | DES | 碳酸氢盐缓冲液, pH=10.5 3×10-3 mol/L H2Dz 四氢呋喃(THF) | 5.6 ng/L | [ | ||||
Sb(III) | FIA-HG-AAS | 水 | SiO2/Al2O3/SnO2 | 0.17 μg/L | [ | |||||
Sb(III) | FI-HG-AAS | 水 | A:pro-MWCNTs B:不同碳纳米材料 | 1.47μg/L 0.52 μg/L | [ | |||||
Sb(V) Sb(III) + Sb(V) | GF-AAS | 水 | 2-噻吩甲酰基三氟丙酮 | 1%硝酸镁与1%硝酸钯 (体积比1:1)混合基体改进剂 | 0.0678 μg/L 0.059 4 μg/L | [ | ||||
Sb(III) | HG-AFS | 水 | 9 ng/L | [ | ||||||
Sb(III) Sb(III) +Sb(V) | HG-AFS | 食品 | 3.5 mol/L HCl | 3.5 mol/L HCl(aq) 10 g/L NaF(aq) 50 g/L硫脲+50 g/L抗坏血酸混合物 | 0.15 μg/L 0.07 μg/L | [ | ||||
Sb(III) | FBA-HG-AFS | 水 | 10%柠檬酸钠 50%KI+10%抗坏血酸 | 6 ng/L | [ | |||||
Sb(III) Sb(V) | MSFIA-HG-AFS | 水 | 0.05% 8-羟基喹啉 | 50% KI | 0.03 μg/L | [ | ||||
Sb(III) Sb(V) | MSFIA-HG-AFS | 土壤 | 8-羟基喹啉 | 50%KI+10%抗坏血酸 | 0.9 ng/g | [ | ||||
Sb(III) Sb(V) | HPLC-HG-AFS | 土壤 | 0.2 mol/L酒石酸溶液 | 色谱柱: DionexIonPac AS19 (250 mm×4 mm) 流动相: 1 mmol/L邻苯二甲酸氢钾+ 10 mmol/L EDTA 流速: 1.0 mL/min | 0.010 μg/g 0.015 μg/g | [ | ||||
Sb(III) Sb(V) | HPLC-HG-AFS | 土壤、沉积物 | 0.1 mol/L草酸+ 20 mmol/L抗坏血酸 | 色谱柱: Hamilton PRP-×100 (100 mm×4.1 mm, 5 μm) 流动相: 20 mmol/L EDTA, pH=4.5 流速: 1.5 mL/min | [ | |||||
Sb(III) Sb(V) | HPLC-HG-AFS | 大气颗粒物 | 0.05 mol/L NH2OH·HCl | 色谱柱: Hamilton PRP-X100 (100 mm×4.1 mm, 10 μm) 流动相: 0.2 mol/L酒石酸 二铵溶液, pH=5 流速: 0.8 mL/min | [ | |||||
Sb(III) | ICP-OES | 水 | 磁性离子印迹聚合物 | 0.13 μg/L | [ | |||||
Sb(III) | ICP-OES | 水 | 多离子印迹聚合物 | 0.011 μg/L | [ |
表3
质谱法测定锑的形态"
锑形态 | 分析方法 | 样品 | 萃取剂 | 分离条件 | 检出限 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|
Sb(III) Sb(V) | HPLC-ICP-MS | 水 | 0.11 mol/L乙酸, pH=2.85 0.1 mol/L盐酸羟胺, pH=2.0 8.8 mol/L H2O2 +1.0 mol/L乙酸铵, pH=2.0 | 色谱柱: Dionex Ion Pac AS-7 (50 mm×4 mm, 10 μm) 柱温: 35 °C 流动相: 1.0 mmol/L邻苯二甲酸酯 +10 mmol/L EDTA, pH=4.5 流速: 1.2 mL/min | 0.009 g/L 0.012 g/L | [ | ||
Sb(III) Sb(V) | HPLC-ICP-MS | 水、沉积物 | 5 mmol/L Na2HPO4, 50 mmol/L KH2PO4 pH=6.0±0.2 | 色谱柱: Ion Pac AG-7 (50 mm×4 mm, 10 μm) 柱温: 35 ℃ 流动相:A: 0.1 mol/L NH4NO3, pH=4 B:0.8 mol/L HNO3 流速: 1.7 mL/min | 0.009 μg/L 0.012 μg/L | [ | ||
Sb(III) Sb(V) | HPLC-ICP-MS | 水、沉积物 | 0.11 mol/L乙酸 0.1 mol/L盐酸羟胺 8.8 mol/L H2O2 +1.0 mol/L乙酸铵 | 色谱柱: DionexIonPac AS 7 (250 mm×4 mm, 10 μm) 柱温: 30 ℃ 流动相: 1.5 mmol/L phthalate +10 mmol/L EDTA, pH=4.0 流速: 0.7 mL/min | 0.009 μg/L 0.014 μg/L | [ | ||
Sb(III) Sb(V) | HPLC-ICP-MS | PM2.5 | 0.04 mol/L盐酸羟胺 +10%乙酸+0.05 mol/L EDTA | 色谱柱: Hamilton PRP-X100 (4.6 mm×150 mm, 5 μm) 流动相:0.03 mol/L NH4NO3 +0.001 mol/L EDTA, pH=3.5 流速: 1.0 mL/min | 0.10 ng/m3 0.06 ng/m3 | [ | ||
Sb(III) Sb(V) | HPLC-ICP-MS | 土壤 | 100 mmol/L柠檬酸 | 色谱柱: Hamilton PRP-X100 (25 cm×4.1 mm, 10 μm) 流动相: 200 mmol/L酒石酸铵 +4%甲醇, pH=5.0 流速: 1.2 mL/min | 0.03 μg/L 0.02 μg/L | [ | ||
Sb(III) Sb(V) | ETV-ICP-MS | 食品 | 6.0 mg TDNFs 15 μL三氯甲烷 | 载气流量:0.43 L/min 干燥温度: 100 ℃ 灰化温度: 200 ℃ 蒸发温度: 2 000 ℃ 清洗温度: 2 600 ℃ | 0.019 ng/L 0.025 ng/L | [ | ||
Sb(III) | IC-ICP-MS | 水 | 色谱柱:Hamilton PRP-X100 (4.6 mm×250 mm) 流动相:10 mmol/L EDTA, 3 mmol/L EDTA 流速: 1.0 mL/min | 0.003~0.004 μg/L | [ | |||
Sb(III) Sb(V) | IC-ICP-MS | 水、食品 | 色谱柱: Hamilton PRP-X100 (250 mm×4 mm, 10 μm) 流动相: A: 20 mmol/L EDTA, 2 mmol/L KHP, 1%甲醇, pH=5.5 B: 20 mmol/L EDTA, 2 mmol/L KHP, 40 mmol/L (NH4)2CO3, 1%甲醇, pH=9.0 流速:1.2 mL/min | 0.012~0.032 μg/L | [ | |||
Sb(III) | IC-ICP-MS | 食品 | 色谱柱: Hamilton PRP-X100 (250 mm×4.6 mm) 流动相: 10 mmol/L EDTA +1 mmol/L邻苯二甲酸氢钾 流速: 1.0 mL/min | 0.1 μg/L | [ |
[1] |
HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. DOI: 10.1016/j.jes.2018.05.023.
doi: S1001-0742(18)30880-5 pmid: 30473279 |
[2] |
刘晓芸, 刘晶晶, 柯勇, 等. 水体中锑的形态及转化规律研究进展[J]. 中国有色金属学报, 2021, 31(5): 1330-1346. DOI: 10.11817/j.ysxb.1004.0609.2021-36569.
doi: 10.11817/j.ysxb.1004.0609.2021-36569 |
[3] |
刘硕勋, 黄天舒, 颜耕, 等. 土壤和沉积物中重金属锑及其价态分析方法研究进展[J]. 环境化学, 2018, 37(2): 271-278. DOI: 10.7524/j.issn.0254-6108.2017081504.
doi: 10.7524/j.issn.0254-6108.2017081504 |
[4] |
ZHANG Y, DING C X, GONG D X, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24: 102026. DOI: 10.1016/j.eti.2021.102026.
doi: 10.1016/j.eti.2021.102026 |
[5] |
MARCINKOWSKA M, BARAŁKIEWICZ D. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review[J]. Talanta, 2016, 161: 177-204. DOI: 10.1016/j.talanta.2016.08.034.
doi: S0039-9140(16)30608-7 pmid: 27769396 |
[6] |
WESTERHOFF P, PRAPAIPONG P, SHOCK E, et al. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water[J]. Water Research, 2008, 42(3): 551-556. DOI: 10.1016/j.watres.2007.07.048.
doi: 10.1016/j.watres.2007.07.048 pmid: 17707454 |
[7] |
GUO Q H, PLANER-FRIEDRICH B, LUO L, et al. Speciation of antimony in representative sulfidic hot springs in the YST Geothermal Province (China) and its immobilization by spring sediments[J]. Environmental Pollution (Barking, Essex: 1987), 2020, 266(Pt 1): 115221. DOI: 10.1016/j.envpol.2020.115221.
doi: 10.1016/j.envpol.2020.115221 |
[8] |
MCCALLUM R I. Occupational exposure to antimony compounds[J]. Journal of Environmental Monitoring: JEM, 2005, 7(12): 1245-1250. DOI: 10.1039/b509118g.
doi: 10.1039/b509118g |
[9] |
GUO X J, WANG K P, HE M C, et al. Antimony smelting process generating solid wastes and dust: Characterization and leaching behaviors[J]. Journal of Environmental Sciences, 2014, 26(7): 1549-1556. DOI: 10.1016/j.jes.2014.05.022.
doi: 10.1016/j.jes.2014.05.022 pmid: 25080005 |
[10] |
WEN B, ZHOU J W, ZHOU A G, et al. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures[J]. Science of the Total Environment, 2016, 569/570: 114-122. DOI: 10.1016/j.scitotenv.2016.05.124.
doi: 10.1016/j.scitotenv.2016.05.124 |
[11] |
HU X Y, HE M C, KONG L H. Photopromoted oxidative dissolution of stibnite[J]. Applied Geochemistry, 2015, 61: 53-61. DOI: 10.1016/j.apgeochem.2015.05.014.
doi: 10.1016/j.apgeochem.2015.05.014 |
[12] |
ZHANG D, GUO J L, XIE X J, et al. Acidity-dependent mobilization of antimony and arsenic in sediments near a mining area[J]. Journal of Hazardous Materials, 2022, 426: 127790. DOI: 10.1016/j.jhazmat.2021.127790.
doi: 10.1016/j.jhazmat.2021.127790 |
[13] |
LIN Q, LIU E F, ZHANG E L, et al. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing[J]. Science of the Total Environment, 2018, 613/614: 331-341. DOI: 10.1016/j.scitotenv.2017.09.073.
doi: 10.1016/j.scitotenv.2017.09.073 |
[14] |
CHANG X, YU Y, LI Y X. Response of antimony distribution in street dust to urban road traffic conditions[J]. Journal of Environmental Management, 2021, 296: 113219. DOI: 10.1016/j.jenvman.2021.113219.
doi: 10.1016/j.jenvman.2021.113219 |
[15] |
梅俊, 王秀季, 吴喜仁, 等. HG-AFS测定垃圾焚烧炉烟道气中锑的形态[J]. 广东微量元素科学, 2012, 19(4): 62-66. DOI: 10.16755/j.cnki.issn.1006-446x.2012.04.003.
doi: 10.16755/j.cnki.issn.1006-446x.2012.04.003 |
[16] |
TAKAOKA M, YAMAMOTO T, TANAKA T, et al. Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy[J]. Physica Scripta, 2005: 943. DOI: 10.1238/physica.topical.115a00943.
doi: 10.1238/physica.topical.115a00943 |
[17] |
QI C C, LIU G J, CHOU C L, et al. Environmental geochemistry of antimony in Chinese coals[J]. The Science of the Total Environment, 2008, 389(2/3): 225-234. DOI: 10.1016/j.scitotenv.2007.09.007.
doi: 10.1016/j.scitotenv.2007.09.007 |
[18] |
MONTSERRAT F, NELSON B, CHEN Y W. Antimony in the environment: A review focused on natural waters[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176. DOI: 10.1016/s0012-8252(01)00070-8.
doi: 10.1016/s0012-8252(01)00070-8 |
[19] |
LONG X J, WANG X, GUO X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences (China), 2020, 90: 189-204. DOI: 10.1016/j.jes.2019.12.008.
doi: 10.1016/j.jes.2019.12.008 |
[20] |
YUAN L, WANG J L, ZHONG Z Q, et al. Immobilization of antimony in soil and groundwater using Ferro-magnesium bimetallic organic frameworks[J]. Journal of Environmental Sciences, 2023, 125: 194-204. DOI: 10.1016/j.jes.2022.01.030.
doi: 10.1016/j.jes.2022.01.030 pmid: 36375905 |
[21] |
FANG L, ZHOU A G, LI X Q, et al. Response of antimony and arsenic in Karst aquifers and groundwater geochemistry to the influence of mine activities at the world's largest antimony mine, central China[J]. Journal of Hydrology, 2021, 603: 127131. DOI: 10.1016/j.jhydrol.2021.127131.
doi: 10.1016/j.jhydrol.2021.127131 |
[22] |
LI J Y, ZHENG B H, HE Y Z, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125-134. DOI: 10.1016/j.ecoenv.2018.03.024.
doi: S0147-6513(18)30200-8 pmid: 29549735 |
[23] |
吴汯翰. 锑在环境中的形态变化及生物毒性研究[J]. 节能, 2018, 37(8): 86-87. DOI: 10.3969/j.issn.1004/7948.2018.08.025.
doi: 10.3969/j.issn.1004/7948.2018.08.025 |
[24] |
ZHANG C P, LIU T, YANG Z Y, et al. Study on antimony and arsenic cycling, transformation and contrasting mobility in river-type reservoir[J]. Applied Geochemistry, 2022, 136: 105132. DOI: 10.1016/j.apgeochem.2021.105132.
doi: 10.1016/j.apgeochem.2021.105132 |
[25] |
SERAFIMOVSKA J M, ARPADJAN S, STAFILOV T, et al. Study of the antimony species distribution in industrially contaminated soils[J]. Journal of Soils and Sediments, 2013, 13(2): 294-303. DOI: 10.1007/s11368-012-0623-9.
doi: 10.1007/s11368-012-0623-9 |
[26] |
任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449. DOI: 10.7524/j.issn.0254-6108.2019090701.
doi: 10.7524/j.issn.0254-6108.2019090701 |
[27] |
王丽, 杨爱江, 邓秋静, 等. 贵州独山锑矿区土壤-头花蓼系统中重金属的分布特征[J]. 生态学杂志, 2017, 36(12): 3545-3552. DOI: 10.13292/j.1000-4890.201712.005.
doi: 10.13292/j.1000-4890.201712.005 |
[28] |
冯人伟, 韦朝阳, 涂书新. 植物对锑的吸收和代谢及其毒性的研究进展[J]. 植物学报, 2012, 47(3): 302-308. DOI: 10.3724/SP.J.1259.2012.00302.
doi: 10.3724/SP.J.1259.2012.00302 |
[29] |
WU T L, CUI X D, CUI P X, et al. Speciation and location of arsenic and antimony in rice samples around antimony mining area[J]. Environmental Pollution, 2019, 252: 1439-1447. DOI: 10.1016/j.envpol.2019.06.083.
doi: 10.1016/j.envpol.2019.06.083 |
[30] |
NATASHA, SHAHID M, KHALID S, et al. Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health[J]. Applied Geochemistry, 2019, 106: 45-59. DOI: 10.1016/j.apgeochem.2019.04.006.
doi: 10.1016/j.apgeochem.2019.04.006 |
[31] |
CRAIG P J, JENKINS R O, MILLER D, et al. An analytical method for the detection of methylantimony species in environmental matrices: Methylantimony levels in some UK plant material[J]. Analyst, 1999, 124(8): 1243-1248. DOI: 10.1039/A903787J.
doi: 10.1039/A903787J |
[32] |
谭湘武, 马金辉, 萧福元, 等. 食品中总锑含量及形态分析技术研究进展[J]. 实用预防医学, 2016, 23(1): 126-129. DOI: 10.3969/j.issn.1006-3110.2016.01.040.
doi: 10.3969/j.issn.1006-3110.2016.01.040 |
[33] |
ZIH-PERENYI K, NEUROHR K, G. NAGY G, et al. Selective extraction of traffic-related antimony compounds for speciation analysis by graphite furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(9/10): 847-851. DOI: 10.1016/j.sab.2010.06.006.
doi: 10.1016/j.sab.2010.06.006 |
[34] |
VINHAL J O, GONÇALVES A D, CRUZ G F B, et al. Speciation of inorganic antimony (III & V) employing polyurethane foam loaded with bromopyrogallol red[J]. Talanta, 2016, 150: 539-545. DOI: 10.1016/j.talanta.2015.12.080.
doi: 10.1016/j.talanta.2015.12.080 |
[35] |
WU H, WANG X C, LIU B, et al. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(1): 74-80. DOI: 10.1016/j.sab.2010.12.002.
doi: 10.1016/j.sab.2010.12.002 |
[36] |
MENDIL D, BARDAK H, TUZEN M, et al. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry[J]. Talanta, 2013, 107: 162-166. DOI: 10.1016/j.talanta.2013.01.010.
doi: 10.1016/j.talanta.2013.01.010 pmid: 23598207 |
[37] |
LONDONIO A, PARODI B, GIL R A, et al. A comparative study of two nanosubstrates for the on-line solid phase extraction of antimony by FI-HG-AAS[J]. Microchemical Journal, 2016, 128: 235-241. DOI: 10.1016/j.microc.2016.05.003.
doi: 10.1016/j.microc.2016.05.003 |
[38] |
de OLIVEIRA L L G, FERREIRA G O, SUQUILA FAC, et al. Development of new analytical method for preconcentration/speciation of inorganic antimony in bottled mineral water using FIA-HG AAS system and SiO2/Al2O3/SnO2 ternary oxide[J]. Food Chemistry, 2019, 294: 405-413. DOI: 10.1016/j.foodchem.2019.05.061.
doi: 10.1016/j.foodchem.2019.05.061 |
[39] |
JAKAVULA S, BIATA N R, DIMPE K M, et al. Magnetic ion imprinted polymers (MIIPs) for selective extraction and preconcentration of Sb(III) from environmental matrices[J]. Polymers, 2021, 14(1): 21. DOI: 10.3390/polym14010021.
doi: 10.3390/polym14010021 |
[40] |
LI P, CHEN Y J, HU X, et al. Magnetic solid phase extraction for the determination of trace antimony species in water by inductively coupled plasma mass spectrometry[J]. Talanta, 2015, 134: 292-297. DOI: 10.1016/j.talanta.2014.11.026.
doi: S0039-9140(14)00918-7 pmid: 25618670 |
[41] |
IGNACIO L G, SILVIA R, MANA J, et al. Speciation of very low amounts of antimony in waters using magnetic core-modified silver nanoparticles and electrothermal atomic absorption spectrometry[J]. Talanta, 2017, 162: 309-315. DOI: 10.1016/j.talanta.2016.10.044.
doi: 10.1016/j.talanta.2016.10.044 |
[42] |
PANHWAR A H, TUZEN M, HAZER B, et al. Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples[J]. Talanta, 2018, 184: 115-121. DOI: 10.1016/j.talanta.2018.03.004.
doi: S0039-9140(18)30236-4 pmid: 29674021 |
[43] |
CHEN S Z, ZHU S P, LU D B. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 139: 70-74. DOI: 10.1016/j.sab.2017.11.008.
doi: 10.1016/j.sab.2017.11.008 |
[44] |
QUIROZ W, ASTUDILLO F, BRAVO M, et al. Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection[J]. Microchemical Journal, 2016, 129: 111-116. DOI: 10.1016/j.microc.2016.06.016.
doi: 10.1016/j.microc.2016.06.016 |
[45] |
de ANDRADE K J, de ANDRADE C K, FELSNER M L, et al. Pre-concentration and speciation of inorganic antimony in bottled water and natural water by cloud point extraction with Electrothermal Atomic Absorption Spectrometry[J]. Microchemical Journal, 2017, 133: 222-230. DOI: 10.1016/j.microc.2017.03.043.
doi: 10.1016/j.microc.2017.03.043 |
[46] |
OVIEDO M N, FIORENTINI E F, LEMOS A A, et al. Ultra-sensitive Sb speciation analysis in water samples by magnetic ionic liquid dispersive liquid-liquid microextraction and multivariate optimization[J]. Analytical Methods: Advancing Methods and Applications, 2021, 13(8): 1033-1042. DOI: 10.1039/d0ay02276d.
doi: 10.1039/d0ay02276d |
[47] |
ALTUNAY N, ELIK A, GURKAN R. Innovative and practical deep eutectic solvent based vortex assisted microextraction procedure for separation and preconcentration of low levels of arsenic and antimony from sample matrix prior to analysis by hydride generation-atomic absorption spectrometry[J]. Food Chemistry, 2019, 293: 378-386. DOI: 10.1016/j.foodchem.2019.05.019.
doi: S0308-8146(19)30814-3 pmid: 31151625 |
[48] |
LIENDO F, de la VEGA A P, JESUS AGUIRRE M, et al. A simple graphene modified electrode for the determination of antimony(III) in edible plants and beverage[J]. Food Chemistry, 2022, 367: 130676. DOI: 10.1016/j.foodchem.2021.130676.
doi: 10.1016/j.foodchem.2021.130676 |
[49] | 明佳佳, 雷晓庆, 李倩. 石墨炉原子吸收法原位分析生活饮用水中锑形态[J]. 中国卫生检验杂志, 2018, 28(17): 2071-2074. |
[50] |
BAGHBAN N, YILMAZ E, SOYLAK M. Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection[J]. Journal of Molecular Liquids, 2017, 234: 260-267. DOI: 10.1016/j.molliq.2017.03.079.
doi: 10.1016/j.molliq.2017.03.079 |
[51] |
de DONCKER K, DUMAREY R, DAMS R, et al. Determination of antimony in atmospheric particulate matter by hydride generation and atomic absorption spectrometry[J]. Analytica Chimica Acta, 1983, 153: 33-40. DOI: 10.1016/S0003-2670(00)85485-9.
doi: 10.1016/S0003-2670(00)85485-9 |
[52] |
de PENA Y P, VIELMA O, BURGUERA J L, et al. On-line determination of antimony(III) and antimony(V) in liver tissue and whole blood by flow injection - hydride generation - atomic absorption spectrometry[J]. Talanta, 2001, 55(4): 743-754. DOI: 10.1016/S0039-9140(01)00483-0.
doi: 10.1016/S0039-9140(01)00483-0 pmid: 18968421 |
[53] |
LONDONIO A, PARODI B, GIL R A, et al. A comparative study of two nanosubstrates for the on-line solid phase extraction of antimony by FI-HG-AAS[J]. Microchemical Journal, 2016, 128: 235-241. DOI: 10.1016/j.microc.2016.05.003.
doi: 10.1016/j.microc.2016.05.003 |
[54] |
DOS SANTOS G, SILVA L, SANTOS A F, et al. Analytical strategies for determination and environmental impact assessment of inorganic antimony species in natural waters using hydride generation atomic fluorescence spectrometry (HG AFS)[J]. Journal of the Brazilian Chemical Society, 2018, 29(1): 185-190. DOI: 10.21577/0103-5053.20170129.
doi: 10.21577/0103-5053.20170129 |
[55] | 谭湘武, 马金辉, 萧福元, 等. 氢化物发生-原子荧光光谱法测定食品样品中的锑(III)和锑(V)[J]. 中国卫生检验杂志, 2015, 25(23): 4021-4023. |
[56] |
COSTA FERREIRA S L, DOS ANJOS J P, ASSISFELIXCS, et al. Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry - Review[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 335-343. DOI: 10.1016/j.trac.2018.11.017.
doi: 10.1016/j.trac.2018.11.017 |
[57] |
LIMA E A, CUNHA F A S, JUNIOR M M S, et al. A fast and sensitive flow-batch method with hydride generating and atomic fluorescence spectrometric detection for automated inorganic antimony speciation in waters[J]. Talanta, 2020, 207: 119834. DOI: 10.1016/j.talanta.2019.04.035.
doi: 10.1016/j.talanta.2019.04.035 |
[58] |
PORTUGAL L A, FERRER L, SERRA A M, et al. A non-chromatographic automated system for antimony speciation in natural water exploiting multisyringe flow injection analysis coupled with online hydride generation-atomic fluorescence spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(5): 1133-1141. DOI: 10.1039/C4JA00476K.
doi: 10.1039/C4JA00476K |
[59] |
SILVA JUNIOR M M, PORTUGAL L A, SERRA A M, et al. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS[J]. Talanta, 2017, 165: 502-507. DOI: 10.1016/j.talanta.2016.12.022.
doi: S0039-9140(16)30963-8 pmid: 28153289 |
[60] |
ALSIOUFI L, SÁNCHEZ DE LA CAMPA A M, SÁNCHEZ-RODAS D. Microwave extraction as an alternative to ultrasound probe for antimony speciation in airborne particulate matter[J]. Microchemical Journal, 2016, 124: 256-260. DOI: 10.1016/j.microc.2015.09.004.
doi: 10.1016/j.microc.2015.09.004 |
[61] |
GARCÍA-MESA J C, MONTORO LEAL P, LÓPEZ GUERRERO M M, et al. Simultaneous determination of noble metals, Sb and Hg by magnetic solid phase extraction on line ICP OES based on a new functionalized magnetic graphene oxide[J]. Microchemical Journal, 2019, 150: 104141. DOI: 10.1016/j.microc.2019.104141.
doi: 10.1016/j.microc.2019.104141 |
[62] |
RAPHAEL B N, MASHILE G P, RAMONTJA J, et al. Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination[J]. Journal of Food Composition and Analysis, 2019, 76: 14-21. DOI: 10.1016/j.jfca.2018.11.004.
doi: 10.1016/j.jfca.2018.11.004 |
[63] |
WELNA M, SZYMCZYCHA-MADEJA A. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES[J]. Food Chemistry, 2014, 159: 414-419. DOI: 10.1016/j.foodchem.2014.03.046.
doi: 10.1016/j.foodchem.2014.03.046 pmid: 24767075 |
[64] |
BIATA N R, NYABA L, RAMONTJA J, et al. Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction[J]. Food Chemistry, 2017, 237: 904-911. DOI: 10.1016/j.foodchem.2017.06.058.
doi: S0308-8146(17)31040-3 pmid: 28764084 |
[65] |
JAKAVULA S, BIATA N R, DIMPE K M, et al. Magnetic ion imprinted polymers (MIIPs) for selective extraction and preconcentration of Sb(III) from environmental matrices[J]. Polymers, 2021, 14(1): 21. DOI: 10.3390/polym14010021.
doi: 10.3390/polym14010021 |
[66] |
薛佳. 液相色谱-原子荧光光谱联用法测定土壤砷铬锑硒元素价态[J]. 岩矿测试, 2021, 40(2): 250-261. DOI: 10.15898/j.cnki.11-2131/td.202003090028.
doi: 10.15898/j.cnki.11-2131/td.202003090028 |
[67] |
QUIROZ W, ASTUDILLO F, BRAVO M, et al. Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection[J]. Microchemical Journal, 2016, 129: 111-116. DOI: 10.1016/j.microc.2016.06.016.
doi: 10.1016/j.microc.2016.06.016 |
[68] |
JAKAVULA S, BIATA N R, DIMPE K M, et al. Multi-ion imprinted polymers (MIIPs) for simultaneous extraction and preconcentration of Sb(III), Te(IV), Pb(II) and Cd(II) ions from drinking water sources[J]. Journal of Hazardous Materials, 2021, 416: 126175. DOI: 10.1016/j.jhazmat.2021.126175.
doi: 10.1016/j.jhazmat.2021.126175 |
[69] | JABŁOŃKA-CZAPLA M. Antimony, arsenic and chromium speciation studies in białaprzemszariver (upper Silesia, Poland) water by HPLC-ICP-MS[J]. International Journal of Environmental Research and Public Health, 2015, 12(5) |
[70] |
JABLONSKA-CZAPLA M, SZOPA S, GRYGOYC K, et al. Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study[J]. Talanta, 2014, 120: 475-483. DOI: 10.1016/j.talanta.2013.11.092.
doi: 10.1016/j.talanta.2013.11.092 |
[71] | JABŁOŃSKA-CZAPLA M, GRYGOYĆK . Spatial and temporal variability of metal(loid)s concentration as well as simultaneous determination of five arsenic and antimony species using HPLC-ICP-MS technique in the study of water and bottom sediments of the shallow, lowland, dam reservoir in Poland[J]. Environmental Science and Pollution Research, 2020, 27(11) |
[72] |
FANG L Y, ZHANG Y M, LU B B, et al. New two-step extraction method in antimony speciation using HPLC-ICP-MS technique in inhalable particulate matter (PM2.5)[J]. Microchemical Journal, 2019, 146: 1269-1275. DOI: 10.1016/j.microc.2019.02.052.
doi: 10.1016/j.microc.2019.02.052 |
[73] |
GE Z F, WEI C Y. Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography-inductively coupled plasma-mass spectrometry detection: Application to antimony speciation in soil samples[J]. Journal of Chromatographic Science, 2013, 51(5): 391-399. DOI: 10.1093/chromsci/bms153.
doi: 10.1093/chromsci/bms153 pmid: 23019249 |
[74] |
CHEN S Z, ZHU S P, LU D B. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 139: 70-74. DOI: 10.1016/j.sab.2017.11.008.
doi: 10.1016/j.sab.2017.11.008 |
[75] |
刘德晔, 姜新. 离子色谱-电感耦合等离子体质谱法测定饮用水中痕量无机锑(Ⅲ)[J]. 食品安全质量检测学报, 2019, 10(23): 8056-8061. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2019.23.043.
doi: 10.19812/j.cnki.jfsq11-5956/ts.2019.23.043 |
[76] |
LIN Y A, JIANG S J, SAHAYAM A C. Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry[J]. Food Chemistry, 2017, 230: 76-81. DOI: 10.1016/j.foodchem.2017.03.014.
doi: 10.1016/j.foodchem.2017.03.014 |
[77] |
LIU D Y, ZHU F, JI W L, et al. Determination of trace inorganic antimony in PET-bottled soy sauce by ion chromatography-inductively coupled plasma mass spectrometry[J]. Microchemical Journal, 2019, 151: 104257. DOI: 10.1016/j.microc.2019.104257.
doi: 10.1016/j.microc.2019.104257 |
[1] | 严谨, 李翡, 吴克明, 杨皓博. 新加苁蓉菟丝汤通过线粒体自噬途径促卵泡发育的分子机制[J]. 山东科学, 2024, 37(5): 25-34. |
[2] | 张微, 刘震远, 杜昊忱, 郭田甜, 杨梅, 王善栋, 韩培, 宋祥云, 张贵民. 小建中合剂活性炭除杂工艺优化及其制剂稳定性影响研究[J]. 山东科学, 2024, 37(4): 1-8. |
[3] | 张潇丹, 贺晓东, 高燕, 杨龙飞, 张冠群, 于子翔, 柳明君, 王雅菲, 更藏加, 赵渤年. 黄连琥珀清心丸质量标准研究[J]. 山东科学, 2024, 37(4): 17-25. |
[4] | 钱桂英, 钱云英, 吴晓明, 金凤珠. 超高效液相色谱-串联质谱结合化学计量学分析金银花中多组分含量[J]. 山东科学, 2023, 36(5): 1-8. |
[5] | 王常瞵, 高明周, 郭英慧, 孙亚, 于小钧, 闫志, 王杰琼, 乔明琦. 芦丁在大鼠体内的代谢产物鉴定与代谢途径分析[J]. 山东科学, 2023, 36(5): 9-18. |
[6] | 邬伟魁, 严倩茹, 古炳明, 刘佳, 宋伟. 基于投料规范值评价中药制剂质量风险[J]. 山东科学, 2023, 36(4): 29-34. |
[7] | 吴丹, 黄碧云, 王静, 刘龙. 超高效液相色谱-四级杆/静电场轨道阱高分辨质谱法同时检测补中益气丸中毛蕊异黄酮葡萄糖苷、橙皮苷、甘草酸铵的含量[J]. 山东科学, 2023, 36(2): 16-22. |
[8] | 邓志鹏, 李静, 赵盼, 宋佳. HPLC-MS/MS测定大鼠血浆中杨芽黄素的含量[J]. 山东科学, 2022, 35(4): 21-27. |
[9] | 袁敏, 梁瑞雪, 刘青. 利湿通淋颗粒中小檗碱和益母草碱的质量控制[J]. 山东科学, 2021, 34(4): 26-33. |
[10] | 张宪, 李岳. 不同产地桑叶中黄酮类成分含量分析[J]. 山东科学, 2021, 34(4): 34-39. |
[11] | 刘友彬, 李玉阳, 李燕. 固相萃取-高效液相色谱-串联质谱法分析环境水样中5种酚类化合物[J]. 山东科学, 2021, 34(3): 71-79. |
[12] | 郜琪臻, 刘芳瑜, 丁平田. 基于液相色谱-质谱联用法建立盐酸坦洛新缓释片比格犬体内含量检测方法[J]. 山东科学, 2021, 34(2): 34-41. |
[13] | 刘兰畦, 赵燕芳, 谢含仪, 王珊珊, 陈相峰. 盐酸厄洛替尼基因毒性杂质液相色谱-质谱联用分析方法学验证[J]. 山东科学, 2020, 33(2): 121-125. |
[14] | 孙晶, 魏永利, 李克明, 梁昆. 高效液相色谱法测定6个不同产地的牡丹叶中丹皮酚和芍药苷含量[J]. 山东科学, 2020, 33(1): 24-28. |
[15] | 胡祥昊, 李亚男, 孙志强, 高鹏, 代龙. 不同产地苦杏仁药材及其饮片水提液HPLC指纹图谱研究[J]. 山东科学, 2019, 32(4): 1-7. |
|
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0