|
[1] 王丙雨,邹俊,韩勇,等. 车辆和自行车碰撞事故中骑车人下肢损伤风险研究[J]. 振动与冲击, 2023, 42(11): 324-330. DOI: 10.13465/j.cnki.jvs.2023.11.038.
[2] 魏晋,安实,张炎棠. 考虑建成环境交互影响的共享单车需求预测[J]. 科学技术与工程, 2023, 23(26): 11424-11430.
[3] 赵琳娜,贾兴无,戴帅,等.中国城市道路交通安全特点解析[J]. 城市交通, 2018, 16(03): 9-14+20. DOI:
10.13813/j.cn11-5141/u.2018.0302.
[4] 黎健侃,李泽炜,华汶雯,等. 城市道路交通事故统计分析[J]. 科技创新与应用, 2021, 11(21): 74-76. DOI: 10.19981/j.cn23-1581/g3.2021.21.023.
[5]
ALNAWMASI N, MANNERING F. An analysis of
day and night bicyclist injury severities in vehicle/bicycle crashes: A
comparison of unconstrained and partially constrained temporal modeling
approaches[J]. Analytic methods in accident research, 2023, 40: 100301. DOI:
10.1016/j.amar.2023.100301.
[6]
WU J, RASOULI S, ZHAO J, et al. Large
truck fatal crash severity segmentation and analysis incorporating all parties
involved: A Bayesian network approach[J]. Travel Behaviour and Society, 2023,
30: 135-147. DOI: 10.1016/j.tbs.2022.09.003.
[7] LUAN S, LI M, LI X, et al. Effects of built
environment on bicycle wrong Way riding behavior: A data-driven approach[J].
Accident Analysis & Prevention, 2020, 144: 105613. DOI:
10.1016/j.aap.2020.105613.
[8]
DASH I, ABKOWITZ M, PHILIP C. Factors
impacting bike crash severity in urban areas[J]. Journal of safety research,
2022, 83: 128-138. DOI: 10.1016/j.jsr.2022.08.010.
[9]
YANG Z, YANG Z, SMITH J, et al. Risk
analysis of bicycle accidents: A Bayesian approach[J]. Reliability Engineering
& System Safety, 2021, 209: 107460. DOI: 10.1016/j.ress.2021.107460.
[10]
杨园园,鲁统宇,崔俊,等. 考虑错分代价的ADASVM-CSLINEX模型及应用[J]. 计算机工程与应用, 2024, 60(03): 348-356. DOI:
10.3778/j.issn.1002-8331.2210-0379.
[11]谭鼎. 基于集成学习的慢行交通事故严重程度预测及致因分析[D]. 兰州:兰州交通大学, 2024. DOI: 10.27205/d.cnki.gltec.2024.001534.
[12] YAHAYA M, GUO R, FAN W, et al. Bayesian networks for imbalance data to investigate
the contributing factors to fatal injury crashes on the Ghanaian highways[J].
Accident Analysis & Prevention, 2021, 150: 105936. DOI:
10.1016/j.aap.2020.105936.
[13]
潘义勇,李烁.建成环境对交叉口行人事故严重程度异质性影响[J].重庆交通大学学报(自然科学版),2024,43(06):87-93+117. DOI:
10.3969/j.issn.1674-0696.2024.06.12.
[14]
HOSSEINI S H, DAVOODI S R, BEHNOOD A.
Bicyclists injury severities: An empirical assessment of temporal stability[J].
Accident Analysis & Prevention, 2022, 168: 106616. DOI: 10.1016/j.aap.2022.106616.
[15]
LIN Z, FAN W D. Exploring bicyclist
injury severity in bicycle-vehicle crashes using latent class clustering
analysis and partial proportional odds models[J]. Journal of safety research,
2021, 76: 101-117. DOI: 10.1016/j.jsr.2020.11.012.
[16] 马硕.考虑时空效应的自行车事故特征及影响因素研究[D].北京:北京建筑大学, 2024. DOI: 10.26943/d.cnki.gbjzc.2024.000816.
[17]
SONG Y, CHITTURI M V, NOYCE D A.
Intersection two-vehicle crash scenario specification for automated vehicle
safety evaluation using sequence analysis and Bayesian networks[J]. Accident
Analysis & Prevention, 2022, 176: 106814. DOI: 10.1016/j.aap.2022.106814.
[18]
邓佳.人—车交通事故严重程度Probit预测模型构建及实证研究[D].西安:长安大学,2019.
[19]
晏钰棚. 自行车事故伤害严重程度影响因素相对重要性和时空异质性研究[D]. 成都:西南交通大学, 2021. DOI: 10.27414/d.cnki.gxnju.2021.001225.
[20]
布和.道路交通事故的成因分析及预防研究[J].武汉公安干部学院学报, 2019, 33(02): 16-20.
[21]
申昕, 沈金星, 郑长江, 等. 基于Multinomial Logit模型的美国北卡罗莱纳州慢行交通事故严重程度分析[J]. 交通与运输, 2021, 37(05): 24-28.
[22]
孙少峰. 基于集成学习的新能源车辆与内燃机车辆交通事故严重程度影响因素对比研究[D]. 西安:长安大学, 2021. DOI: 10.26976/d.cnki.gchau.2021.001818.
[23]
翟洪军,陈启光,申春悌,等. 基于潜在类别分析对不同年龄组患者新冠肺炎病因病机证候研究[J].世界科学技术-中医药现代化, 2021, 23(03): 866-873. DOI: 10.11842/wst.20200622001.
[24]
焦朋朋,李汝鉴,王健宇,等. 考虑潜在类别的老年行人交通事故严重程度致因分析[J].交通运输系统工程与信息, 2022, 22(05): 328-336. DOI: 10.16097/j.cnki.1009-6744.2022.05.034.
[25]
李昂, 韩萌, 穆栋梁, 等. 多类不平衡数据分类方法综述[J]. 计算机应用研究, 2022, 39(12): 3534-3545. DOI:
10.19734/j.issn.1001-3695.2022.03.0198.
[26]
ABD ELRAHMAN S M, ABRAHAM A. A review of
class imbalance problem[J]. Journal of Network and Innovative Computing, 2013,
1: 9-9.
[27]
DELEN D, TOMAK L, TOPUZ K, et al.
Investigating injury severity risk factors in automobile crashes with
predictive analytics and sensitivity analysis methods[J]. Journal of Transport
& Health, 2017, 4: 118-131.
[28]
HE H, BAI Y, GARCIA E A, et al. ADASYN:
Adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE
international joint conference on neural networks (IEEE world congress on
computational intelligence). Ieee, 2008: 1322-1328.
[29]
CHAWLA N V, BOWYER K W, HALL L O, et al.
SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial
intelligence research, 2002, 16: 321-357. DOI: 10.1613/jair.953.
[30]
HECKERMAN D, GEIGER D, CHICKERING D M.
Learning Bayesian networks: The combination of knowledge and statistical
data[J]. Machine learning, 1995, 20: 197-243. DOI: 10.1007/BF00994016.
[31]
SIVASANKARAN S K, BALASUBRAMANIAN V.
Exploring the severity of bicycle–vehicle crashes using latent class clustering
approach in India[J]. Journal of safety research, 2020, 72: 127-138. DOI:
10.1016/j.jsr.2019.12.012.
[32]
SUN Z, XING Y, WANG J, et al. Exploring
injury severity of bicycle-motor vehicle crashes: A two-stage approach
integrating latent class analysis and random parameter logit model[J]. Journal
of Transportation Safety & Security, 2022, 14(11): 1838-1864. DOI:
10.1080/19439962.2021.1971814.
[33]
SAMEREI S A, AGHABAYK K, SHIWAKOTI N, et
al. Using latent class clustering and binary logistic regression to model
Australian cyclist injury severity in motor vehicle–bicycle crashes[J]. Journal
of Safety Research, 2021, 79: 246-256. DOI: 10.1016/j.jsr.2021.09.005.
[34]孙晴.考虑时间不稳定性的货车-小汽车事故严重程度影响因素分析[D].西安:长安大学, 2021. DOI: 10.26976/d.cnki.gchau.2021.000866.
[35] MYHRMANN M S, JANSTRUP K H,
MØLLER M, et al. Factors
influencing the injury severity of single-bicycle crashes[J]. Accident Analysis
& Prevention, 2021, 149: 105875. DOI: 10.1016/j.aap.2020.105875.
[36] 王精滢.考虑空间异质性的机非交通事故严重程度分析[D]. 成都:西南交通大学, 2020. DOI:
10.27414/d.cnki.gxnju.2020.000850.
[37] 丁晶玉.考虑关联因素异质性及非线性的骑行者碰撞事故受伤严重程度研究[D]. 大连:大连交通大学,2024. DOI: 10.26990/d.cnki.gsltc.2024.000296.
|