[1] |
ALEGADO R A, KING N. Bacterial influences on animal origins[J]. Cold Spring Harbor Perspectives in Biology, 2014, 6(11): a016162.DOI: 10.1101/cshperspect.a016162.
|
[2] |
DAYEL M J, ALEGADO R A, FAIRCLOUGH S R, et al. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta[J]. Developmental Biology, 2011, 357(1): 73-82.DOI: 10.1016/j.ydbio.2011.06.003.
|
[3] |
LEVIN T C, GREANEY A J, WETZEL L, et al. The Rosetteless gene controls development in the choanoflagellate Salpingoeca rosetta[J]. eLife, 2014, 3:e04070.DOI: 10.7554/eLife.04070.
|
[4] |
BRUNET T, KING N. The single-celled ancestors of animals[M]// The Evolution of Multicellularity. Boca Raton: CRC Press, 2022: 251-278. DOI: 10.1201/9780429351907-17.
|
[5] |
DOLAN J R. On saville-kent's “a manual of the infusoria”[J]. Protist, 2024, 175(1): 126008. DOI: 10.1016/j.protis.2023.126008.
|
[6] |
RICHTER D J, KING N. The genomic and cellular foundations of animal origins[J]. Annual Review of Genetics, 2013, 47(1): 509-537. DOI: 10.1146/annurev-genet-111212-133456.
|
[7] |
RAGUŽ L, PENG C C, RUTAGANIRA F U N, et al. Total synthesis and functional evaluation of IORs, sulfonolipid-based inhibitors of cell differentiation in Salpingoeca rosetta[J]. Angewandte Chemie (International Ed in English), 2022, 61(41): e202209105. DOI: 10.1002/anie.202209105.
|
[8] |
COYLE M C, TAJIMA A M, LEON F, et al. An RFX transcription factor regulates ciliogenesis in the closest living relatives of animals[J]. Current Biology: CB, 2023, 33(17): 3747-3758. DOI: 10.1016/j.cub.2023.07.022.
|
[9] |
PINSKEY J M, LAGISETTY A, GUI L, et al. Three-dimensional flagella structures from animals' closest unicellular relatives, the Choanoflagellates[J]. eLife, 2022, 11:e78133. DOI: 10.7554/eLife.78133.
|
[10] |
HOFFMEYER T T, BURKHARDT P. Choanoflagellate models-Monosiga brevicollis and Salpingoeca rosetta[J]. Current Opinion in Genetics & Development, 2016, 39: 42-47. DOI: 10.1016/j.gde.2016.05.016.
|
[11] |
LIANG Y W, PAN J M. Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii[J]. PLoS One, 2013, 8(7): e69902. DOI: 10.1371/journal.pone.0069902.
|
[12] |
BROWN J M, COCHRAN D A, CRAIGE B, et al. Assembly of IFT trains at the ciliary base depends on IFT74[J]. Current Biology : CB, 2015, 25(12): 1583-1593. DOI: 10.1016/j.cub.2015.04.060.
|
[13] |
LI L L, TIAN G M, PENG H, et al. New class of transcription factors controls flagellar assembly by recruiting RNA polymerase II in Chlamydomonas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4435-4440. DOI: 10.1073/pnas.1719206115.
|
[14] |
LUO M N, CAO M Q, KAN Y N, et al. The phosphorylation state of an Aurora-like kinase marks the length of growing flagella in Chlamydomonas[J]. Current Biology : CB, 2011, 21(7): 586-591. DOI: 10.1016/j.cub.2011.02.046.
|
[15] |
CAO M Q, LI G H, PAN J M. Regulation of cilia assembly, disassembly, and length by protein phosphorylation[J]. Methods in Cell Biology, 2009, 94: 333-346. DOI: 10.1016/S0091-679X(08)94017-6.
pmid: 20362099
|
[16] |
PLOTNIKOVA O V, PUGACHEVA E N, DUNBRACK R L, et al. Rapid calcium-dependent activation of Aurora-a kinase[J]. Nature Communications, 2010, 1(6): 64.DOI: 10.1038/ncomms1061.
|
[17] |
PAN J M, SNELL W J. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading[J]. Developmental Cell, 2005, 9(3): 431-438. DOI: 10.1016/j.devcel.2005.07.010.
|
[18] |
OU Y, RUAN Y B, CHENG M, et al. Adenylate cyclase regulates elongation of mammalian primary cilia[J]. Experimental Cell Research, 2009, 315(16): 2802-2817. DOI: 10.1016/j.yexcr.2009.06.028.
pmid: 19576885
|
[19] |
WILSON N F, LEFEBVRE P A. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii[J]. Eukaryotic Cell, 2004, 3(5): 1307-1319. DOI: 10.1128/EC.3.5.1307-1319.2004.
|
[20] |
ALEGADO R A, BROWN L W, CAO S G, et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals[J]. eLife, 2012, 1: e00013. DOI: 10.7554/eLife.00013.
|
[21] |
SIGG M A, MENCHEN T, LEE C, et al. Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways[J]. Developmental Cell, 2017, 43(6): 744-762.e11. DOI: 10.1016/j.devcel.2017.11.014.
pmid: 29257953
|
[22] |
BRUNET T, ALBERT M, ROMAN W, et al. A flagellate-to-amoeboid switch in the closest living relatives of animals[J]. eLife, 2021, 10: e61037. DOI: 10.7554/eLife.61037.
|
[23] |
BOOTH D S, SZMIDT-MIDDLETON H, KING N. Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins[J]. Molecular Biology of the Cell, 2018, 29(25): 3026-3038. DOI: 10.1091/mbc.E18-08-0514.
pmid: 30281390
|
[24] |
MATRIANO D M, ALEGADO R A, CONACO C. Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta[J]. Scientific Reports, 2021, 11(1): 5993. DOI: 10.1038/s41598-021-85259-6.
|
[25] |
BOOTH D S, KING N. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta[J]. eLife, 2020, 9: e56193. DOI: 10.7554/eLife.56193.
|
[26] |
WOZNICA A, GERDT J P, HULETT R E, et al. Mating in the closest living relatives of animals is induced by a bacterial chondroitinase[J]. Cell, 2017, 170(6): 1175-1183.e11. DOI: 10.1016/j.cell.2017.08.005.
pmid: 28867285
|
[27] |
DAYEL M J, KING N. Prey capture and phagocytosis in the choanoflagellate Salpingoeca rosetta[J]. PLoS One, 2014, 9(5): e95577. DOI: 10.1371/journal.pone.0095577.
|
[28] |
曹木青, 潘俊敏. 纤毛及纤毛相关疾病研究进展[J]. 中国细胞生物学学报, 2012, 34(9): 849-856.
|
[29] |
TAKEUCHI K, ABO M, DATE H, et al. Practical guide for the diagnosis and management of primary ciliary dyskinesia[J]. Auris Nasus Larynx, 2024, 51(3): 553-568. DOI: 10.1016/j.anl.2024.02.001.
pmid: 38537559
|