Shandong Science ›› 2025, Vol. 38 ›› Issue (3): 14-24.doi: 10.3976/j.issn.1002-4026.20240143
• Ocean Remote Sensing • Previous Articles Next Articles
CHEN Peng1,2,3(), LI Yunzhou1,3,4, ZHANG Siqi2,3,*(
), ZHANG Zhenhua2, PAN Delu2,3
Received:
2024-12-11
Online:
2025-06-20
Published:
2025-06-26
Contact:
ZHANG Siqi
E-mail:chenp@sio.org.cn;sqzhang@sio.org.cn
CLC Number:
CHEN Peng, LI Yunzhou, ZHANG Siqi, ZHANG Zhenhua, PAN Delu. LiDAR-based monitoring of diurnal-nocturnal oceanic carbon flux[J].Shandong Science, 2025, 38(3): 14-24.
[1] | GRUBER N, BAKKER D C, DEVRIES T, et al. Trends and variability in the ocean carbon sink[J]. Nature Reviews Earth & Environment, 2023, 4(2): 119-34. DOI: 10.1038/s43017-022-00381-x. |
[2] | LE QUÉRÉ C, RÖDENBECK C, BUITENHUIS E T, et al. Saturation of the Southern Ocean CO2 sink due to recent climate change[J]. Science, 2007, 316(5832): 1735-1738. DOI: 10.1126/science.1136188. |
[3] | LE QUÉRÉ C, RAUPACH M R, CANADELL J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature geoscience, 2009, 2(12): 831-836. DOI: 10.1038/ngeo689. |
[4] | WU J, GOES J I, DO ROSARIO GOMES H, et al. Estimates of diurnal and daily net primary productivity using the Geostationary Ocean Color Imager (GOCI) data[J]. Remote Sensing of Environment, 2022, 280: 113183. DOI: 10.1016/j.rse.2022.113183. |
[5] | BURGER F A, JOHN J G, FRöLICHER T L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2[J]. Biogeosciences, 2020, 17(18): 4633-4662. DOI:10.5194/BG-17-4633-2020. |
[6] | TORRES O, KWIATKOWSKI L, SUTTON A J, et al. Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments[J]. Geophysical Research Letters, 2021, 48(5): e2020GL090228. DOI: 10.1029/2020gl090228. |
[7] | MCNEIL B I, SASSE T P. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle[J]. Nature, 2016, 529(7586): 383-386. DOI: 10.1038/nature16156. |
[8] | PIERRE F, JONES MATTHEW W, MICHAEL O, et al. Global carbon budget 2021[J]. Earth System Science Data Discussions, 2021.DOI:10.5194/essd-2021-386. |
[9] | FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4):3269-3340.DOI:10.5194/essd-12-3269-2020. |
[10] | FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2022[J]. Earth System Science Data Discussions, 2022. DOI:10.5194/essd-14-4811-2022. |
[11] | FAY A R, GREGOR L, LANDSCHüTZER P, et al. Harmonization of global surface ocean p C O 2 mapped products and their flux calculations; an improved estimate of the ocean carbon sink [J]. Earth System Science Data Discussions, 2021: 1-32. |
[12] | RÖDENBECK C, BAKKER D C E, GRUBER N, et al. Data-based estimates of the ocean carbon sink variability-first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)[J]. Biogeosciences, 2015, 12(23): 7251-7278. DOI: 10.5194/bg-12-7251-2015. |
[13] | LE QUÉRÉ C, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017[J]. Earth System Science Data, 2018, 10(1): 405-448. DOI: 10.5194/essd-10-405-2018 |
[14] | CHAU T T T, GEHLEN M, CHEVALLIER F. A seamless ensemble-based reconstruction of surface ocean pCO2 and air-sea CO2 fluxes over the global coastal and open oceans[J]. Biogeosciences, 2022, 19(4): 1087-1109. DOI: 10.5194/bg-19-1087-2022. |
[15] | BATES N R, TAKAHASHI T, CHIPMAN D W, et al. Variability of pCO2 on diel to seasonal timescales in the Sargasso Sea near Bermuda[J]. Journal of Geophysical Research: Oceans, 1998, 103(C8): 15567-15585. DOI: 10.1029/98jc00247. |
[16] | OLSEN A, OMAR A M, STUART-MENTETH A C, et al. Diurnal variations of surface ocean pCO2 and sea-air CO2 flux evaluated using remotely sensed data[J]. Geophysical Research Letters, 2004, 31(20): 2004GL020583. DOI: 10.1029/2004gl020583. |
[17] | ALBRIGHT R, TAKESHITA Y, KOWEEK D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification[J]. Nature, 2018, 555(7697): 516-519. DOI: 10.1038/nature25968. |
[18] | DRUPP P S, DE CARLO E H, MACKENZIE F T, et al. Comparison of CO2 dynamics and air-sea gas exchange in differing tropical reef environments[J]. Aquatic Geochemistry, 2013, 19(5): 371-397. DOI: 10.1007/s10498-013-9214-7. |
[19] | MURIE K A, BOURDEAU P E. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry[J]. Scientific Reports, 2020, 10: 11939. DOI: 10.1038/s41598-020-68841-2. |
[20] | BERG P, DELGARD M L, POLSENAERE P, et al. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow[J]. Limnology and Oceanography, 2019, 64(6): 2586-2604. DOI: 10.1002/lno.11236. |
[21] | HOFMANN G E, SMITH J E, JOHNSON K S, et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison[J]. PLoS One, 2011, 6(12): e28983. DOI: 10.1371/journal.pone.0028983. |
[22] | PAGE H N, COURTNEY T A, DE CARLO E H, et al. Spatiotemporal variability in seawater carbon chemistry for a coral reef flat in Kāne'ohe Bay, Hawai'i[J]. Limnology and Oceanography, 2019, 64(3): 913-934. DOI: 10.1002/lno.11084. |
[23] | JURY C, THOMAS F, ATKINSON M, et al. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change[J]. Water, 2013, 5(3): 1303-1325. DOI: 10.3390/w5031303. |
[24] | DENMAN K, CHRISTIAN J R, STEINER N, et al. Potential impacts of future ocean acidification on marine ecosystems and fisheries: Current knowledge and recommendations for future research[J]. ICES Journal of Marine Science, 2011, 68(6): 1019-1029. DOI: 10.1093/icesjms/fsr074. |
[25] | KRANZ S A, DIETER S, RICHTER K U, et al. Carbon acquisition by Trichodesmium: The effect of pCO2 and diurnal changes[J]. Limnology and Oceanography, 2009, 54(2): 548-559. DOI: 10.4319/lo.2009.54.2.0548. |
[26] | PETER H, SINGER G A, PREILER C, et al. Scales and drivers of temporal pCO2 dynamics in an Alpine stream[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(6): 1078-1091. DOI: 10.1002/2013jg002552. |
[27] | LACHS L, DONNER S, EDWARDS A J, et al. Higher spatial resolution is not always better: Evaluating satellite-sensed sea surface temperature products for a west Pacific coral reef system[J]. Scientific Reports, 2025, 15: 1321. DOI: 10.1038/s41598-024-84289-0. |
[28] | CHEN G, TANG J W, ZHAO C F, et al. Concept design of the “guanlan” science mission: China’s novel contribution to space oceanography[J]. Frontiers in Marine Science, 2019, 6: 194. DOI: 10.3389/fmars.2019.00194. |
[29] | 汪自军, 张扬, 刘东, 等. 新型多波束陆海激光雷达探测卫星技术发展研究[J]. 红外与激光工程, 2021, 50(7): 20211041. DOI: 10.3788/IRLA20211041. |
[30] | 唐军武, 陈戈, 陈卫标, 等. 海洋三维遥感与海洋剖面激光雷达[J]. 遥感学报, 2021, 25(1): 460-500. DOI:10.11834/jrs.20210495 |
[31] | 陈卫标, 刘东. 海洋遥感激光雷达: 原理与技术[M]. 北京: 海洋出版社, 2021. |
[32] | BEHRENFELD M J, GAUBE P, DELLA PENNA A, et al. Global satellite-observed daily vertical migrations of ocean animals[J]. Nature, 2019, 576(7786): 257-261. DOI: 10.1038/s41586-019-1796-9. |
[33] | HOSTETLER C A, BEHRENFELD M J, HU Y X, et al. Spaceborne lidar in the study of marine systems[J]. Annual Review of Marine Science, 2018, 10: 121-147. DOI: 10.1146/annurev-marine-121916-063335. |
[34] | BEHRENFELD M J, HU Y X, O’MALLEY R T, et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar[J]. Nature Geoscience, 2016, 10(2): 118-122. DOI: 10.1038/ngeo2861. |
[35] | LU X M, HU Y X, YANG Y K, et al. Antarctic spring ice-edge blooms observed from space by ICESat-2[J]. Remote Sensing of Environment, 2020, 245: 111827. DOI: 10.1016/j.rse.2020.111827. |
[36] | OVERPECK J T, MEEHL G A, BONY S, et al. Climate data challenges in the 21st century[J]. Science, 2011, 331(6018): 700-702. DOI: 10.1126/science.1197869. |
[37] | MOREL A, GENTILI B. Radiation transport within oceanic (case 1) water[J]. Journal of Geophysical Research: Oceans, 2004, 109(C6): 2003JC002259. DOI: 10.1029/2003jc002259. |
[38] | SCHULIEN J A, BEHRENFELD M J, HAIR J W, et al. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar[J]. Optics Express, 2017, 25(12): 13577-13587. DOI: 10.1364/OE.25.013577. |
[39] | BABIN M, ARRIGO K R, BéLANGER S, et al. Ocean colour remote sensing in polar seas: report of an IOCCG working group on ocean colour remote sensing in polar seas[M]. International Ocean Colour Coordinating Group, 2015. |
[40] | BHARDWAJ A, SAM L, BHARDWAJ A, et al. LiDAR remote sensing of the cryosphere: Present applications and future prospects[J]. Remote Sensing of Environment, 2016, 177: 125-143. DOI: 10.1016/j.rse.2016.02.031. |
[41] | ZHANG Z H, ZHANG S Q, BEHRENFELD M J, et al. Combining deep learning with physical parameters in POC and PIC inversion from spaceborne lidar CALIOP[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 212: 193-211. DOI: 10.1016/j.isprsjprs.2024.05.007. |
[42] | CHEN P, JAMET C, LIU D. LiDAR remote sensing for vertical distribution of seawater optical properties and chlorophyll-a from the East China Sea to the South China Sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4207321. DOI: 10.1109/TGRS.2022.3174230. |
[43] | ZHANG S Q, CHEN P, HU Y X, et al. Research Report Diurnal global ocean surface pCO2 and air-sea CO2 flux reconstructed from spaceborne LiDAR data[J]. PNAS Nexus, 2023, 3(1): pgad432. DOI: 10.1093/pnasnexus/pgad432. |
[44] | CHEN P, JAMET C, ZHANG Z H, et al. Vertical distribution of subsurface phytoplankton layer in South China Sea using airborne lidar[J]. Remote Sensing of Environment, 2021, 263: 112567. DOI: 10.1016/j.rse.2021.112567. |
[45] | ZHANG S, CHEN P, ZHANG Z, et al. Carbon air-sea flux in the Arctic Ocean from CALIPSO from 2007 to 2020[J]. Remote Sensing, 2022, 14(24): 6196. |
[46] | CHURNSIDE J H, SHAW J A. Lidar remote sensing of the aquatic environment: Invited[J]. Applied Optics, 2020, 59(10): C92-C99. DOI: 10.1364/AO.59.000C92. |
[47] | CILLINA, ARCHAMBAULT P, LONG B. Mapping the shallowwater seabedhabitat withthe SHOALS[J]. IEEETransactions on Geoscience and Remote Sensing, 2008, 46(10): 2947-2955. DOI:10.1109/TGRS.2008.920020. |
[48] | BEHRENFELD M J, HU Y X, HOSTETLER C A, et al. Space-based lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4360. DOI: 10.1002/grl.50816. |
[49] | KHEIREDDINE M, BREWIN R J W, OUHSSAIN M, et al. Particulate scattering and backscattering in relation to the nature of particles in the red sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016610. |
[50] | DIONISI D, BRANDO V E, VOLPE G, et al. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black sea[J]. Remote Sensing of Environment, 2020, 247: 111889. DOI: 10.1016/j.rse.2020.111889. |
[51] | LACOUR L, LAROUCHE R, BABIN M. In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient[J]. Optics Express, 2020, 28(18): 26989-26999. DOI: 10.1364/OE.397126. |
[52] | LEE Z P, DU K P, ARNONE R. A model for the diffuse attenuation coefficient of downwelling irradiance[J]. Journal of Geophysical Research (Oceans), 2005, 110(C2): C02016. DOI: 10.1029/2004JC002275. |
[53] | KUNZ G J, DE LEEUW G. Inversion of lidar signals with the slope method[J]. Applied Optics, 1993, 32(18): 3249-3256. DOI: 10.1364/AO.32.003249. |
[54] | FERNALD F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 1984, 23(5): 652. DOI: 10.1364/ao.23.000652. |
[55] | BU L, HUANG X, CAO N, et al. Mie-Rayleigh-Raman lidar for measurement of atmospheric temperature and aerosol extinction[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7382:73824Y-73824Y-6.DOI:10.1117/12.835730. |
[56] | KLETT J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220. DOI: 10.1364/AO.20.000211. |
[57] | EGOROV A D, POTAPOVA I A, SHCHUKIN G G. Lidar methods for probing an atmospheric aerosol[J]. Journal of Optical Technology, 2001, 68(11): 801. DOI:10.1364/JOT.68.000801. |
[58] | CHEN P, PAN D L, MAO Z H, et al. A feasible calibration method for type 1 open ocean water LiDAR data based on bio-optical models[J]. Remote Sensing, 2019, 11(2): 172. DOI: 10.3390/rs11020172. |
[59] | CHURNSIDE J H, SULLIVAN J M, TWARDOWSKI M S. Lidar extinction-to-backscatter ratio of the ocean[J]. Optics Express, 2014, 22(15): 18698-18706. DOI: 10.1364/OE.22.018698. |
[60] | CHURNSIDE J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2014, 53(5): 051405. DOI: 10.1117/1.oe.53.5.051405. |
[61] | HOGAN R. Fast lidar and radar multiple-scattering models. part I: Small-angle scattering using the photon variance-covariance method[J]. Journal of the Atmospheric Sciences, 2008, 65(12): 3621-3635. DOI:10.1175/2008JAS2642.1. |
[62] | LUCHININ A G, KIRILLIN M Y, DOLIN L S. Backscatter signals in underwater lidars: Temporal and frequency features[J]. Applied Optics, 2018, 57(4): 673-677. DOI: 10.1364/AO.57.000673. |
[63] | CHEN P, PAN D L, MAO Z H, et al. Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer[J]. Optics & Laser Technology, 2019, 111: 1-5. DOI: 10.1016/j.optlastec.2018.09.028. |
[64] | LIU D, XU P T, ZHOU Y D, et al. Lidar remote sensing of seawater optical properties: Experiment and Monte Carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9489-9498. DOI: 10.1109/TGRS.2019.2926891. |
[65] | BISSONNETTE L R. Lidar and multiple scattering[M]. Lidar:Range-resolvedoptical remote sensing of the atmosphere. New York, NY: NY: Springer NewYork, 2005:43-103. |
[66] | MITRA K, CHURNSIDE J H. Transient radiative transfer equation applied to oceanographic lidar[J]. Applied Optics, 1999, 38(6): 889-895. DOI: 10.1364/ao.38.000889. |
[67] | RAMELLA-ROMAN J, PRAHL S, JACQUES S. Three Monte Carlo programs of polarized light transport into scattering media: Part I[J]. Optics Express, 2005, 13(12): 4420-4438. DOI: 10.1364/opex.13.004420. |
[68] | GORDON H R. Interpretation of airborne oceanic lidar: Effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996-3001. DOI: 10.1364/AO.21.002996. |
[69] | STEGMANN P G, SUN B Q, DING J C, et al. Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 225: 1-15. DOI: 10.1016/j.jqsrt.2018.12.009. |
[70] | POOLE L R, VENABLE D D, CAMPBELL J W. Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems[J]. Applied Optics, 1981, 20(20): 3653-3656. DOI: 10.1364/AO.20.003653. |
[71] | LIU Q, CUI X Y, JAMET C, et al. A semianalytic Monte Carlo simulator for spaceborne oceanic lidar: Framework and preliminary results[J]. Remote Sensing, 2020, 12(17): 2820. DOI: 10.3390/rs12172820. |
[72] | HU Y X, WINKER D, YANG P, et al. Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 70(4/5/6): 569-579. DOI: 10.1016/S0022-4073(01)00030-9. |
[73] | HU Y X, LIU Z Y, WINKER D, et al. Simple relation between lidar multiple scattering and depolarization for water clouds[J]. Optics Letters, 2006, 31(12): 1809-1811. DOI: 10.1364/ol.31.001809. |
[74] | CHURNSIDE J H. Polarization effects on oceanographic lidar[J]. Optics Express, 2008, 16(2): 1196-1207. DOI: 10.1364/oe.16.001196. |
[75] | LI L X, STEGMANN P G, ROSENKRANZ S, et al. Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: Application to the time-shift technique[J]. Optics Express, 2019, 27(25): 36388-36404. DOI: 10.1364/OE.27.036388. |
[76] | ZHAI S Y, TWARDOWSKI M, HEDLEY J D, et al. Optical backscattering and linear polarization properties of the colony forming Cyanobacterium Microcystis[J]. Optics Express, 2020, 28(25): 37149-37166. DOI: 10.1364/OE.405871. |
[77] | WINKER D M, COUCH R H, MCCORMICK M P. An overview of LITE: NASA’s lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2): 164-180. DOI: 10.1109/5.482227. |
[78] | LANCASTER R S, SPINHIRNE J D, PALM S P. Laser pulse reflectance of the ocean surface from the GLAS satellite lidar[J]. Geophysical Research Letters, 2005, 32(22): 2005GL023732. DOI: 10.1029/2005gl023732. |
[79] | WINKER D M, PELON J, COAKLEY J, et al. The CALIPSO mission: A global 3D view of aerosols and clouds[J]. Bulletin of the American Meteorological Society, 2010, 91(9): 1211-1229. DOI: 10.1175/2010BAMS3009.1. |
[80] | LUX O, LEMMERZ C, WEILER F, et al. ALADIN laser frequency stability and its impact on the Aeolus wind error[J]. Atmospheric Measurement Techniques Discussions, 2021, 2021: 1-40. |
[81] | PARRISH C E, MAGRUDER L A, NEUENSCHWANDER A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote Sensing, 2019, 11(14): 1634. DOI: 10.3390/rs11141634. |
[82] | PEREIRA DO CARMO J, DE VILLELE G, HELIÈRE A, et al. ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission[J]. CEAS Space Journal, 2019, 11(4): 423-435. DOI: 10.1007/s12567-019-00284-6. |
[83] | 郭金权, 李国元, 左志强, 等. 高分七号卫星激光测高仪全波形数据质量及特征分析[J]. 红外与激光工程, 2020, 49(S2): 20200387.DOI:10.3788/IRLA20200387. |
[84] | 陈卫标, 刘继桥, 侯霞, 等. 大气环境监测卫星激光雷达技术[J]. 上海航天(中英文), 2023, 40(3): 13-20. DOI: 10.19328/j.cnki.2096-8655.2023.03.002. |
[85] | JAMET C, IBRAHIM A, AHMAD Z, et al. Going beyond standard ocean color observations: Lidar and polarimetry[J]. Frontiers in Marine Science, 2019, 6: 251. DOI: 10.3389/fmars.2019.00251. |
[86] | STARR D. NASA’s aerosol-cloud-ecosystems (ACE) mission[C]// Imaging and Applied Optics. Toronto: OSA, 2011: HMA4. DOI: 10.1364/hise.2011.hma4. |
[87] | BEHRENFELD M J, LORENZONI L, HU Y X, et al. Satellite lidar measurements as a critical new global ocean climate record[J]. Remote Sensing, 2023, 15(23): 5567. DOI: 10.3390/rs15235567. |
[1] | SHI Zhenjia, HAO Zengzhou, LI Yunzhou, YE Feng, HUANG Haiqing, PAN Delu. Fusion of mesoscale eddy data for the South China Sea [J]. Shandong Science, 2025, 38(3): 99-108. |
[2] | CUI Hao, WANG Zhong-Qiu, LIU Hui, XU Yan. Contour extraction based crest coordinate collection algorithm [J]. J4, 2014, 27(2): 25-29. |
[3] | SUN Ke-Qu, XU Xian, LI Jun, GE Xiu-Jun, MA Pei-Ming, HUANG Chen-Yang, LI Chuan-Zhu. Longterm characteristics of seawater salinity change in Lianyungang coastal sea area [J]. J4, 2014, 27(2): 30-33. |
|