[1] |
GU L J, CUI M M, XU L K, et al. Collaborative offloading method for digital twin empowered cloud edge computing on internet of vehicles[J]. Tsinghua Science and Technology, 2023, 28(3): 433-451. DOI: 10.26599/TST.2022.9010006.
|
[2] |
TANG H J, WU H M, QU G J, et al. Double deep Q-network based dynamic framing offloading in vehicular edge computing[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(3): 1297-1310. DOI: 10.1109/TNSE.2022.3172794.
|
[3] |
YANG T T, GAO S, LI J B, et al. Multi-armed bandits learning for task offloading in maritime edge intelligence networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4212-4224. DOI: 10.1109/TVT.2022.3141740.
|
[4] |
WU L, ZHANG Z, LI Q, et al. A mobile edge computing-based applications execution framework for Internet of Vehicles[J]. Frontiers of Computer Science, 2022(5): 131-141.
|
[5] |
HUANG X M, YU R, YE D D, et al. Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3773-3787. DOI: 10.1109/TVT.2021.3064426.
|
[6] |
BUTE M S, FAN P Z, ZHANG L, et al. An efficient distributed task offloading scheme for vehicular edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13149-13161. DOI: 10.1109/TVT.2021.3117847.
|
[7] |
KU Y J, BAIDYA S, DEY S. Adaptive computation partitioning and offloading in real-time sustainable vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13221-13237. DOI: 10.1109/TVT.2021.3119585.
|
[8] |
ZHENG Q S, GU Y J, LIU Y H, et al. Chaotic particle swarm algorithm-based optimal scheduling of integrated energy systems[J]. Electric Power Systems Research, 2023, 216: 108979. DOI: 10.1016/j.epsr.2022.108979.
|
[9] |
HUANG Y, BAI Y J. Intelligent sports prediction analysis system based on edge computing of particle swarm optimization algorithm[J]. IEEE Consumer Electronics Magazine, 2023, 12(2): 73-82. DOI: 10.1109/MCE.2021.3139837.
|
[10] |
孙一凡, 张纪会. 基于模拟退火机制的自适应粘性粒子群算法[J]. 控制与决策, 2023, 38(10): 2764-2772. DOI: 10.13195/j.kzyjc.2022.0291.
|
[11] |
YOU Q, TANG B. Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial Internet of Things[J]. Journal of Cloud Computing, 2021, 10(1): 41. DOI: 10.1186/s13677-021-00256-4.
|
[12] |
LI W J, DENG W, SHE R, et al. Edge computing offloading strategy based on particle swarm algorithm for power Internet of Things[C]// 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Nanchang: IEEE, 2021: 145-150. DOI: 10.1109/ICBAIE52039.2021.9389919.
|
[13] |
ALQARNI M A, MOUSA M H, HUSSEIN M K. Task offloading using GPU-based particle swarm optimization for high-performance vehicular edge computing[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10): 10356-10364. DOI: 10.1016/j.jksuci.2022.10.026.
|