山东科学 ›› 2025, Vol. 38 ›› Issue (2): 100-108.doi: 10.3976/j.issn.1002-4026.20240099

• 碳中和及减排技术与方法 • 上一篇    下一篇

基于POT模型的油田地面生产油气损耗高值点环节自动识别方法

袁子上1(), 万勇1, 展梓豪1, 范路2, 戴永寿1,*()   

  1. 1.中国石油大学(华东) 海洋与空间信息学院,山东 青岛 266580
    2.胜利油田技术检测中心,山东 东营 257000
  • 收稿日期:2024-08-20 出版日期:2025-04-20 发布日期:2025-04-16
  • 通信作者: *戴永寿(1963—),男,博士,教授,研究方向为信号处理。E-mail:daiys@upc.edu.cn
  • 作者简介:袁子上(2000—),男,硕士研究生,研究方向为油田排放数据分析与处理。E-mail:yuanzishang629@163.com
  • 基金资助:
    国家自然科学基金项目(42274159)

An automatic method based on a POT model for the identification of high-value points of oil and gas loss in the process of oilfield surface production

YUAN Zishang1(), WAN Yong1, ZHAN Zihao1, FAN Lu2, DAI Yongshou1,*()   

  1. 1. College of Ocean and Space Informatics, China University of Petroleum, Qingdao 266580, China
    2. Technical Inspection Center, SINOPEC Shengli Oilfield Company, Dongying 257000, China
  • Received:2024-08-20 Online:2025-04-20 Published:2025-04-16

摘要:

在“双碳”目标下石油化工等高碳排放企业进行低碳转型,降低碳排放已成为重要发展趋势,其中油气损耗在石化行业总能耗中占比较大。针对目前方法无法依据油气损耗数据变化规律自动识别高值点环节的问题,提出了一种基于过阈值模型的油气损耗高值点环节自动识别方法。对胜利油田某采油区的35个环节进行油气损耗核算。依据核算数据尖峰厚尾的分布特征,利用过阈值模型分割油气损耗数据中的尾部数据并拟合其概率分布函数,依据3σ原则识别概率分布函数中对应的油气损耗高值点环节。结果确定高值点阈值为869.34 m3/d,高值点环节识别准确率为0.986,相较于其他传统方法,该方法识别结果更准确,有利于损耗治理工作的高效展开。

关键词: 油田, 油气损耗, POT模型, 高值点识别

Abstract:

Under the “dual carbon” goals, high carbon emitting enterprises in industries, such as petrochemicals, are undergoing a low-carbon transformation and are reducing their carbon emissions, which have grown to become an important development trend. Oil and gas losses account for a large proportion of the total energy consumption in the petrochemical industry. In this study, focusing on the inability to automatically identify the high-value points of loss because of the change in the law of oil and gas loss data, a method for automatically identifying the high-value points of oil and gas loss based on the peak over threshold (POT) model is proposed. First, accounting of oil and gas losses was conducted in 35 links of an oil producing reservoir in Shengli Oilfield. Second, according to the leptokurtic distribution characteristics of the accounting data, the oil and gas loss tail data were segmented using the POT model and fitted with its probability distribution function (PDF). The corresponding high-value points of oil and gas losses in the PDF were identified according to the 3σ principle. Finally, the results determine the threshold of high-value points to be 869.34 m3/d, and the identification accuracy of high-value points to be 0.986, accuracy greater than other traditional methods. Therefore, the proposed method is conducive to the efficient development of loss control methods.

Key words: oilfield, oil and gas losses, POT model, high-value point recognition

中图分类号: 

  • TE85

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0