山东科学 ›› 2023, Vol. 36 ›› Issue (3): 108-114.doi: 10.3976/j.issn.1002-4026.2023.03.013
HOU Mingye(), WANG Xiaoyang*(
), XU Qingjie, YANG Bo, WANG Xiaofeng
摘要:
针对道路长期性能养护决策中庞大的数据分析问题,将深度确定性策略梯度(deep deterministic policy gradient, DDPG)强化学习模型引入到了养护决策分析中,将道路性能的提升及养护资金的有效利用作为机器学习的奖励目标,建立了一套科学有效的沥青路面长期性能养护决策方法,经过与DQN(deep Q-learning network)算法和Q-Learning算法进行对比,DDPG算法所需要的采样数据更少、收敛速度更快,表现更为优异,可有效提升道路服役性能的评估效率,对沥青路面多目标长期养护决策方案的制定起着重要的推动作用。
中图分类号:
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0