山东科学 ›› 2025, Vol. 38 ›› Issue (3): 90-98.doi: 10.3976/j.issn.1002-4026.2025041

• 海洋新能源 • 上一篇    下一篇

Ru/Ce -Al催化剂的合成及其氨分解制氢性能与燃料电池应用评估

王建梅1a,1b(), 司洪宇1a,1b, 王军成2, 厉运周2,*, 许爱华3   

  1. 1.齐鲁工业大学(山东省科学院) 能源研究所 a. 济南市先进储能与氢能利用重点实验室;b. 山东省绿色制氢技术国际联合实验室,山东 济南 250014
    2.齐鲁工业大学(山东省科学院) 海洋仪器仪表研究所,山东 青岛 266100
    3.山东省计量科学研究院,山东 济南 250014
  • 收稿日期:2025-04-18 出版日期:2025-06-20 发布日期:2025-06-26
  • 通信作者: 厉运周 E-mail:wangjm@sderi.cn
  • 作者简介:王建梅(1979—),女,博士,助理研究员,研究方向为能源材料。E-mail:wangjm@sderi.cn
  • 基金资助:
    山东省重点研发计划项目(2023ZLYS01);国家重点研发计划(2022YFC3104200);齐鲁工业大学(山东省科学院)科教产融合试点工程重大创新专项项目(2023HYZX01)

Synthesis of Ru/Ce-Al catalyst and evaluation of its ammonia-decomposition-induced hydrogen production performance and fuel cell application

WANG Jianmei1a,1b(), SI Hongyu1a,1b, DR. KOSCHANY Arthur Ernest1a,1b, WANG Juncheng2, LI Yunzhou2,*, XU Aihua3   

  1. 1. a. Jinan Key Laboratory of Advanced Energy Storage and Hydrogen Utilization;b. International Joint Laboratory for Green Hydrogen Production Technology in Shandong Province,Energy Research Institute of Shandong Academy of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014
    2. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100
    3. Shandong Institute of metrology, Jinan 250014
  • Received:2025-04-18 Online:2025-06-20 Published:2025-06-26
  • Contact: LI Yunzhou E-mail:wangjm@sderi.cn

摘要:

针对分布式供能系统对动态制氢速率的快速响应需求,通过沉淀-水热法制备了Ru/Ce-Al催化剂,解决氨分解制氢单元在变载工况下的动态稳定性难题。采用X射线衍射(XRD)、NH3-TPD(程序升温脱附)及H2-TPR(程序升温还原)等表征手段,揭示Al3+掺杂CeO2与Ce/Al化学计量比对载体氧空位演化的系统调控机制,并考察其氨分解制氢性能。研究表明,Al3+掺杂诱导Ce-Al-O固溶体形成,通过强金属载体相互作用优化载体表面氧空位分布,促进活性金属钌(Ru)的分散。Ru/3Ce-Al催化剂在空速15 000 h-1、525 ℃反应条件下实现93%的氨转化率,其宽温区(500~550 ℃)展现出的均衡反应性能,防止高温反应过快导致催化剂烧结,在100 h的实验中催化剂氨转换效率达91.8%。基于该催化剂构建氨氢燃料电池供能系统,在2 kW工况下,功率、电压和电流波动分别为2.3%、1.1%和0.6%;且在0.22 kW→0.45 kW→0.22 kW阶跃负载测试中,系统功率、电流均可快速响应,验证了其在复杂环境下的动态响应能力与运行稳定性。

关键词: 催化剂, 氨分解, 燃料电池, 分布式供能, 动态响应

Abstract:

To meet the rapid response requirements of distributed energy supply systems for dynamic hydrogen production rates, a Ru/Ce-Al catalyst was prepared using a precipitation-hydrothermal method. This method addresses the challenge of maintaining dynamic stability in ammonia-decomposition-induced hydrogen production units under variable load conditions. Characterization techniques, such as XRD, NH3-TPD, and H2-TPR, were used to reveal the systematic regulation mechanism by which Al3+ doping in CeO2 and the Ce/Al stoichiometric ratio influence the evolution of oxygen vacancies in the support; in addition, their ammonia-decomposition-induced hydrogen production performance were investigated. The results show that Al3+ doping induces the formation of a Ce-Al-O solid solution, which optimizes the distribution of oxygen vacancies on the support surface through strong metal-support interactions (SMSIs), thereby enhancing the dispersion of active metal Ru. At a space velocity of 15 000 h-1 and reaction temperature of 525 ℃, the Ru/3Ce-Al catalyst achieved an ammonia-conversion efficiency of 93%. Its balanced performance over a wide temperature range (500 ℃ -550 ℃) effectively excessive minimized reaction rates at high temperatures that could lead to catalyst sintering. After 100 h of operation, the catalyst maintained an ammonia-conversion efficiency of 91.8%. An ammonia-hydrogen fuel-cell-based energy supply system, constructed using this catalyst, exhibited power, voltage, and current fluctuations of only 2.3%, 1.1%, and 0.6%, respectively, under a 2 kW load. Furthermore, in step-load tests (0.22 kW→0.45 kW→0.22 kW), the system demonstrated rapid power and current responses with pressure fluctuations below 5‰. This result verified its dynamic response capability and operational stability in complex environments.

Key words: catalyst, ammonia decomposition, fuel cell, distributed energy supply, dynamic response

中图分类号: 

  • TQ426.94

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0