山东科学 ›› 2022, Vol. 35 ›› Issue (6): 92-102.doi: 10.3976/j.issn.1002-4026.2022.06.012

• 能源与动力 • 上一篇    下一篇

基于太阳能制氢和高温质子交换膜燃料电池的冷热电联供系统性能分析

宋锐1(), 姬锋军2, 宋举星2, 韩吉田1,*()   

  1. 1.山东大学 能源与动力工程学院,山东 济南 250061
    2.山东电力工程咨询有限公司,山东 济南 250013
  • 收稿日期:2022-01-22 出版日期:2022-12-20 发布日期:2022-12-02
  • 通信作者: 韩吉田 E-mail:17865311552@163.com;jthan@sdu.edu.cn
  • 作者简介:宋锐(1997—),女,硕士研究生,研究方向为冷热电联供系统性能分析。E-mail:17865311552@163.com
  • 基金资助:
    国家自然科学基金国际(地区)合作交流资助项目(41761144067)

Thermodynamic analysis of combined cooling,heating and power system based on solar hydrogen production/high-temperature proton-exchange membrane fuel cell

SONG Rui1(), JI Feng-jun2, SONG Ju-xing2, HAN Ji-tian1,*()   

  1. 1. School of Energy and Power Engineering,Shandong University,Jinan 250061,China
    2. Shandong Electric Power Engineering Consulting Institute Corp. Ltd., Jinan 250013, China
  • Received:2022-01-22 Online:2022-12-20 Published:2022-12-02
  • Contact: HAN Ji-tian E-mail:17865311552@163.com;jthan@sdu.edu.cn

摘要:

设计了一种基于太阳能制氢和高温质子交换膜燃料电池的冷热电联供系统,运用Matlab软件搭建了该联供系统的数学模型,分析了该系统在额定工况下的运行情况。重点研究了变压吸附分离率、高温质子交换膜燃料电池电流密度、工作温度等关键参数对系统?效率和一次能源利用率以及系统输出的冷热电负荷的影响。研究结果表明:在额定输入甲醇流率下,该联供系统白天制氢的6 h期间输出功率为236.68 kW,同时还可为工厂提供1 180.30 kW的热负荷及165.14 kW的冷负荷; 24 h内可输出电功2.30×107 kJ,输出热负荷2.55×107 kJ,冷负荷1.43×107 kJ,联供系统24 h的?效率为69.18%,一次能源利用率为91.69%;联供系统中?损最大的设备依次是燃烧室、换热器3和太阳能重整器。

关键词: 冷热电联供系统, 太阳能甲醇重整制氢, 高温质子交换膜燃料电池, 热力性能分析

Abstract:

A combined cooling, heating, and power system based on solar hydrogen production and high-temperature proton-exchange membrane fuel cell is developed in this study. A mathematical model of the system is built using the Matlab software to analyze the operation conditions of the system under rated working condition. The key design parameters, such as the pressure swing adsorption separation rate, current density, and working temperature of the high-temperature proton-exchange membrane fuel cell are studied emphatically to explore their impact on exergy efficiency; primary energy efficiency; and the cooling, heating, power loads of the system. The results demonstrate that the combined cooling, heating, and power system can provide the power load of 236.68 kW, heating, and cooling loads of 1 180.30 kW, and 165.14 kW, respectively, during a 6 h hydrogen production period under the design flow rate of input methanol. The system can output power, heating, and cooling loads of 2.30 × 107, 2.55 × 107,and 1.43 × 107 kJ every 24 h. The 24 h exergy and the primary energy efficiency of the system are 69.18% and 91.96% respectively. Further, it is observed that the largest exergy loss occurs in the burning room, heat exchanger 3, and solar reforming-reaction generator.

Key words: combined cooling,heating,and power system, solar methanol reforming for hydrogen production, high-temperature proton-exchange membrane fuel cell, thermodynamic analysis

中图分类号: 

  • TK019

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0