山东科学 ›› 2025, Vol. 38 ›› Issue (5): 64-78.doi: 10.3976/j.issn.1002-4026.20240133

• 能源与动力 • 上一篇    下一篇

槽式太阳能耦合压缩空气储能系统动态特性研究

秦浩轩(), 陈伟()   

  1. 青岛科技大学 机电工程学院,山东 青岛 266061
  • 收稿日期:2024-11-14 修回日期:2024-12-11 出版日期:2025-10-20 上线日期:2025-10-11
  • 通信作者: *陈伟,男,副教授,研究方向为吸收式制冷。E-mail:cw_19344616@aliyun.com,Tel:18563923395
  • 作者简介:秦浩轩(1997—),男,硕士研究生,研究方向为压缩空气储能。E-mail:805186371@qq.com
  • 基金资助:
    国家重点研发计划项目(2023YFF0615000);内蒙古自治区科技重大专项项目(2021zd0032)

Dynamic characteristics of a trough solar energy-coupled compressed air energy storage system

QIN Haoxuan(), CHEN Wei()   

  1. College of Mechanical and Electrical Engineering,Qingdao University of Science and Technology,Qingdao 266061,China
  • Received:2024-11-14 Revised:2024-12-11 Published:2025-10-20 Online:2025-10-11

摘要: 在国家双碳政策推动与能源转型进程中,压缩空气储能(CAES)技术与新能源协同发展的需求日益凸显。提出了一种槽式太阳能耦合压缩空气储能系统(SAR-CAES),该系统采用抛物面槽式太阳能集热器辅热先进绝热压缩空气储能系统(AA-CAES)释能过程提供辅助热源。构建了槽式太阳能集热器数学模型和三级膨胀AA-CAES模型,通过Matlab软件中离散化算法实现模型耦合,分析了月份和纬度对系统关键参数影响。结果表明:动态模型满足热力学第一和第二定律;辅热后换热器热负荷发生明显变化,辅热换热器热负荷明显较高,MR和LR几乎不参与换热但产生较大火用损;耦合后压缩空气储能效率明显提升,当时空处于夏至日和北回归线时达峰值;该系统太阳能有效利用效率高于太阳能直驱氨水动力循环系统,冬至日较氨水系统提升67.86%。

关键词: 压缩空气储能, 槽式太阳能, 辅热过程, 动态特性

Abstract:

Under the national dual-carbon policy and energy transition,the need for coordinated development between compressed air energy storage (CAES) technology and renewable energy has grown significantly. A solar auxiliary reheating compressed air energy storage (SAR-CAES) system is proposed. The system integrates a parabolic trough solar collector with an advanced adiabatic CAES system for achieving energy release. A mathematical model of the trough solar collector and a three-stage expansion advanced adiabatic compressed air energy storage system were established. Using the discretization algorithm in Matlab,the models were coupled to analyze the impact of months and latitudes on key system parameters. Results show that the resultant dynamic model satisfies the first and second laws of thermodynamics. After auxiliary heating,the heat load of the auxiliary heat exchanger increased clearly. Medium regenerator and Low regenerator barely participated in heat exchange,but generated considerable exergic loss. The efficiency of compressed air energy storage clearly improved after auxiliary heating,reaching its peak during the summer solstice at the Tropic of Cancer. The effective utilization efficiency of the solar energy in this system is higher than that of a solar-driven ammonia-water regenerative Rankine cycle system,with a maximum efficiency during the winter solstice—67.86% higher than that of the ammonia-water power cycle.

Key words: compressed air energy storage, trough solar energy, auxiliary heating process, dynamic characteristic

中图分类号: 

  • TK02

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0