山东科学 ›› 2025, Vol. 38 ›› Issue (5): 56-63.doi: 10.3976/j.issn.1002-4026.20240124

• 新材料 • 上一篇    下一篇

超高压开关断路器三工位机构铜螺母断裂失效原因分析

张树民1(), 王小平1, 田静1, 许慧霞2, 刘珑2, 丁宁2,*()   

  1. 1.泰安市泰和电力设备有限公司,山东 泰安 271000
    2.齐鲁工业大学(山东省科学院) 山东省分析测试中心 山东省材料失效分析与安全评估工程技术研究中心,山东 济南 250014
  • 收稿日期:2024-10-31 修回日期:2024-12-11 出版日期:2025-10-20 上线日期:2025-10-11
  • 通信作者: *丁宁(1982—),女,博士,副研究员,研究方向为机械结构失效分析及安全评估。E-mail:dingn@qlu.edu.cn
  • 作者简介:张树民(1967—),男,中级工程师,研究方向为输变电设备材料科学、动力传动及控制技术。E-mail:805120195@qq.com
  • 基金资助:
    山东省科技型中小企业创新能力提升工程项目(2023TSGC0618)

Fracture analysis of copper nuts in the three-position mechanism of ultra-high voltage circuit breakers

ZHANG Shumin1(), WANG Xiaoping1, TIAN Jing1, XU Huixia2, LIU Long2, DING Ning2,*()   

  1. 1. Tai’an Taihe Power Equipment Co.,Ltd.,Tai’an 271000,China
    2. Research Center of Failure Analysis and Engineering Safety Assessment,Shandong Analysis and Test Center,Qilu University of Technology (Shandong Academy of Sciences),Jinan 250014,China
  • Received:2024-10-31 Revised:2024-12-11 Published:2025-10-20 Online:2025-10-11

摘要: 超高压开关断路器的三工位机构是电力系统中一种重要的机械装置。铜螺母是三工位机构中不可或缺的关键部件,其过早失效严重影响断路器的稳定运行及使用寿命。为探求三工位机构铜螺母发生断裂的原因,通过不同的分析方法对断裂铜螺母进行了失效分析。采用光学显微镜、扫描电子显微镜和金相显微镜观察断口的宏观形态、微观形貌以及显微组织结构,使用X射线荧光光谱仪及电子万能试验机确定了铜螺母母材的成分和力学性能。结果表明:铜螺母断口起裂区存在多处裂纹源且晶粒粗大,大量析出颗粒存在于晶界处形成网状分布。铜螺母的断裂失效是由疲劳破坏引起的,属于累积损伤破坏。铜螺母裂纹源产生于铜螺母轴销根部的变径位置,该位置在结构上为应力集中区,是铜螺母结构的薄弱位置,在长期交变应力作用下,极易萌生裂纹并逐步扩展,最终导致铜螺母断裂失效。

关键词: 超高压开关, 三工位机构, 铜螺母, 疲劳, 断裂, 应力集中

Abstract:

The three-position mechanism represents a critical mechanical component in ultra-high voltage switch circuit breakers,with the copper nut serving as a pivotal element. Premature failure of this component can significantly compromise the operational stability and longevity of the circuit breaker. This comprehensive investigation employs advanced analytical techniques to elucidate the underlying fracture mechanisms of the copper nut. Utilizing a multifaceted analytical approach,the study systematically examined the fracture morphology and material characteristics. Optical microscopy,scanning electron microscopy,and metallographic microscopy were employed to scrutinize the fracture surface and microstructural features. Complementary analyses using X-ray fluorescence spectrometry and electronic universal testing machine characterized the material’s compositional and mechanical properties. The investigation revealed critical insights into the failure mechanism. Multiple crack initiation sites were identified within the fracture zone,characterized by coarse grain structures and an extensive network of precipitate particles localized at grain boundaries. The failure mode was definitively classified as cumulative fatigue damage. The primary crack source originated at the diameter transition of the shaft pin root’a structural stress concentration zone that represents the most vulnerable point in the copper nut’s mechanical design. The findings underscore the importance of structural geometry and material microstructure in predicting and mitigating mechanical failure in critical electromechanical components.

Key words: ultra-high voltage circuit breaker, three-position mechanism, copper nut, fatigue, fracture, stress concentration

中图分类号: 

  • TG115

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0