山东科学 ›› 2025, Vol. 38 ›› Issue (5): 104-114.doi: 10.3976/j.issn.1002-4026.20240094

• 交通运输 • 上一篇    下一篇

基于高速公路事故数据的自适应事故持续时间预测模型研究

姜晓庆1(), 万青松1, 郝文邦1, 李立2,*(), 程卫平1   

  1. 1.山东高速信息集团有限公司,山东 济南 250102
    2.长安大学 电子与控制工程学院,陕西 西安 710064
  • 收稿日期:2024-07-27 修回日期:2024-09-02 出版日期:2025-10-20 上线日期:2025-10-11
  • 通信作者: *李立,男,副教授,研究方向为智能交通控制。E-mail:lili@chd.edu.cn
  • 作者简介:姜晓庆(1982—),男,硕士研究生,高级工程师,研究方向为高速公路信息化建设。E-mail:jiangxiaoqing@sdhsg.com
  • 基金资助:
    国家自然科学基金(71901040);国家重点研发计划(2023YFB4503105)

Research on an adaptive accident duration-prediction model based on freeway accident data

JIANG Xiaoqing1(), WAN Qingsong1, HAO Wenbang1, LI Li2,*(), CHENG Weiping1   

  1. 1. Shandong Hi-speed Information Group Co.,Ltd.,Jinan 250102,China
    2. School of Electronics and Control Engineering,Chang'an University,Xi'an,710064,China
  • Received:2024-07-27 Revised:2024-09-02 Published:2025-10-20 Online:2025-10-11

摘要:

高速公路交通事故严重影响道路的安全性与畅通性,精准预测事故持续时间是提升事故应急响应效率、减轻交通拥堵及降低二次事故风险的关键。提出了一种基于深度置信网络(DBN)与遗传算法(GA)的自适应参数优化模型,用于预测交通事故持续时间。收集了2020—2022年间山东省高速公路的交通事故数据,涵盖了包括道路属性、时间属性和环境属性在内的16个影响变量;通过引入斯皮尔曼相关性系数和箱型图,分析各影响变量与事故持续时间的相关性,确保所选变量的有效性与显著性。在此基础上,实验结合各类交通事故数据,构建了基于GADBN的自适应参数优化预测模型,该模型融合遗传算法的全局搜索与优化能力,显著提升了DBN模型的预测精度。为验证模型的有效性,实验选取SVR(支持向量回归)、RBF(径向基函数)、XGBoost(极限梯度提升树)和DBN等算法模型进行结果对比,并选取平均绝对百分比误差(δMAPE)和均方根误差(δRMSE)作为评价参数。实验结果表明,GADBN模型在δMAPEδRMSE指标上的表现分别为16.49%和9.12,优于其他对比模型,验证了该模型的有效性与实用性。

关键词: 交通安全, 交通事故, 事故持续时间, 自适应参数优化, 高速公路

Abstract:

Freeway traffic accidents seriously affect road safety and accessibility. Accurately predicting the durations of accidents is key to improving emergency response efficiency,alleviating traffic congestion,and reducing the risk of secondary accidents. This paper proposes an adaptive parameter-optimization model based on a deep belief network (DBN) and genetic algorithm (GA) for predicting traffic accident durations. Traffic accident data from freeways in Shandong province were collected from 2020 to 2022,including 16 variables such as road,temporal attributes,and environmental attributes. The Spearman correlation coefficient and box plots were used to analyze the correlation between each variable and the accident duration,ensuring the validity and significance of the selected variables. Based on this analysis,we developed an adaptive parameter optimization-based prediction model,GADBN,using numerous traffic accident data. This model integrates the global search and optimization capabilities of the GA to notably improve the predictive accuracy of the DBN. To validate the model effectiveness,experimental comparisons were conducted with other algorithms such as support vector regression,radial basis functions,XGBoost,and DBNs,with mean absolute percentage error (δMAPE) and root-mean-square error (δRMSE) being used as evaluation metrics. The experimental results showed that the GADBN model achieved δMAPE and δRMSE values of 16.49% and 9.12,respectively,outperforming the other comparison models,thereby demonstrating its effectiveness and practicality.

Key words: traffic safety, traffic accidents, accident duration, adaptive parameter optimization, freeway

中图分类号: 

  • U491.31

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0