[1] |
Plastic Europe. Plastics:the fast faces 2023[EB/OL].[2024-05-23]. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/.
|
[2] |
ALIMI O S, CLAVEAU-MALLET D, KURUSU R S, et al. Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: what are we missing?[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126955. DOI: 10.1016/j.jhazmat.2021.126955.
|
[3] |
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. DOI: 10.1126/sciadv.1700782.
|
[4] |
LAW K L, THOMPSON R C. Microplastics in the seas: concern is rising about widespread contamination of the marine environment by microplastics[J]. Science, 2014, 345 (6193):144-145.
|
[5] |
HANIF M A, IBRAHIM N, DAHALAN F A, et al. Microplastics and nanoplastics: recent literature studies and patents on their removal from aqueous environment[J]. The Science of the Total Environment, 2022, 810: 152115. DOI: 10.1016/j.scitotenv.2021.152115.
|
[6] |
FERREIRA I, VENÂNCIO C, LOPES I, et al. Nanoplastics and marine organisms: what has been studied?[J]. Environmental Toxicology and Pharmacology, 2019, 67: 1-7. DOI: 10.1016/j.etap.2019.01.006.
pmid: 30685594
|
[7] |
SINGH S, KUMAR NAIK T S S, ANIL A G, et al. Micro (nano) plastics in wastewater: a critical review on toxicity risk assessment, behaviour, environmental impact and challenges[J]. Chemosphere, 2022, 290: 133169. DOI: 10.1016/j.chemosphere.2021.133169.
|
[8] |
ZHOU Y F, GUI L, WEI W B, et al. Low particle concentrations of nanoplastics impair the gut health of medaka[J]. Aquatic Toxicology, 2023, 256: 106422. DOI: 10.1016/j.aquatox.2023.106422.
|
[9] |
SCHRÖTER L, VENTURA N. Nanoplastic toxicity: insights and challenges from experimental model systems[J]. Small, 2022, 18(31): e2201680. DOI: 10.1002/smll.202201680.
|
[10] |
SHEN M C, ZHANG Y X, ZHU Y, et al. Recent advances in toxicological research of nanoplastics in the environment: a review[J]. Environmental Pollution, 2019, 252(Pt A): 511-521. DOI: 10.1016/j.envpol.2019.05.102.
pmid: 31167159
|
[11] |
BOUWMEESTER H, HOLLMANP C H, PETERS R J B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology[J]. Environmental Science & Technology, 2015, 49(15): 8932-8947. DOI: 10.1021/acs.est.5b01090.
|
[12] |
WANG L W, WU W M, BOLAN N S, et al. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives[J]. Journal of Hazardous Materials, 2021, 401: 123415. DOI: 10.1016/j.jhazmat.2020.123415.
|
[13] |
ZHENG X W, ZHANG W Z, YUAN Y, et al. Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111575. DOI: 10.1016/j.ecoenv.2020.111575.
|
[14] |
干牧凡, 张妍, 时鹏, 等. 水生生态系统中微塑料对微藻的生态毒理效应研究进展[J]. 生态毒理学报, 2023, 18(1): 217-231. DOI: 10.7524/AJE.1673-5897.20220215001.
|
[15] |
CHAE Y, KIM D, KIM S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8(1): 284. DOI: 10.1038/s41598-017-18849-y.
|
[16] |
MATTSSON K, JOHNSON E V, MALMENDAL A, et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain[J]. Scientific Reports, 2017, 7(1): 11452. DOI: 10.1038/s41598-017-10813-0.
|
[17] |
GOMES T, ALMEIDA A C, GEORGANTZOPOULOU A. Characterization of cell responses in Rhodomonas baltica exposed to PMMA nanoplastics[J]. The Science of the Total Environment, 2020, 726: 138547. DOI: 10.1016/j.scitotenv.2020.138547.
|
[18] |
HANACHI P, KHOSHNAMVAND M, WALKER T R, et al. Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: toxicity mitigation using humic acid[J]. Aquatic Toxicology, 2022, 245: 106123. DOI: 10.1016/j.aquatox.2022.106123.
|
[19] |
BERGAMI E, PUGNALINI S, VANNUCCINI M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189: 159-169. DOI: 10.1016/j.aquatox.2017.06.008.
|
[20] |
FENG L J, SUN X D, ZHU F P, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa[J]. Environmental Science & Technology, 2020, 54(6): 3386-3394. DOI: 10.1021/acs.est.9b06085.
|
[21] |
SEOANE M, GONZÁLEZ-FERNÁNDEZ C, SOUDANT P, et al. Polystyrene microbeads modulate the energy metabolism of the marine diatom Chaetoceros neogracile[J]. Environmental Pollution, 2019, 251: 363-371. DOI: 10.1016/j.envpol.2019.04.142.
|
[22] |
GAO G, ZHAO X, JIN P, et al. Current understanding and challenges for aquatic primary producers in a world with rising micro- and nano-plastic levels[J]. Journal of Hazardous Materials, 2021, 406: 124685. DOI: 10.1016/j.jhazmat.2020.124685.
|
[23] |
GONZÁLEZ-FERNÁNDEZ C, LE GRAND F, BIDEAU A, et al. Nanoplastics exposure modulate lipid and pigment compositions in diatoms[J]. Environmental Pollution, 2020, 262: 114274. DOI: 10.1016/j.envpol.2020.114274.
|
[24] |
SJOLLEMA S B, REDONDO-HASSELERHARM P, LESLIE H A, et al. Do plastic particles affect microalgal photosynthesis and growth?[J]. Aquatic Toxicology, 2016, 170: 259-261. DOI: 10.1016/j.aquatox.2015.12.002.
pmid: 26675372
|
[25] |
MAO Y F, AI H N, CHEN Y, et al. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period[J]. Chemosphere, 2018, 208: 59-68. DOI: 10.1016/j.chemosphere.2018.05.170.
pmid: 29860145
|
[26] |
YE S S, RAO M Y, XIAO W Y, et al. The relative size of microalgal cells and microplastics determines the toxicity of microplastics to microalgae[J]. Process Safety and Environmental Protection, 2023, 169: 860-868. DOI: 10.1016/j.psep.2022.11.077.
|
[27] |
LIU G, JIANG R F, YOU J, et al. Microplastic impacts on microalgae growth: effects of size and humic acid[J]. Environmental Science & Technology, 2020, 54(3): 1782-1789. DOI: 10.1021/acs.est.9b06187.
|
[28] |
ZHOU J Y, GAO L, LIN Y Y, et al. Micrometer scale polystyrene plastics of varying concentrations and particle sizes inhibit growth and upregulate microcystin-related gene expression in Microcystis aeruginosa[J]. Journal of Hazardous Materials, 2021, 420: 126591. DOI: 10.1016/j.jhazmat.2021.126591.
|
[29] |
孙炎, 刘千龙, 罗肇河, 等. 聚苯乙烯微塑料对东海原甲藻生长的影响[J]. 应用海洋学学报, 2021, 40(4): 636-642. DOI: 10.3969/J.ISSN.2095-4972.2021.04.010.
|
[30] |
YI X L, CHI T T, LI Z C, et al. Combined effect of polystyrene plastics and triphenyltin chloride on the green algae Chlorella pyrenoidosa[J]. Environmental Science and Pollution Research International, 2019, 26(15): 15011-15018. DOI: 10.1007/s11356-019-04865-0.
|
[31] |
LUO H W, XIANG Y H, HE D Q, et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris[J]. The Science of the Total Environment, 2019, 678: 1-9. DOI: 10.1016/j.scitotenv.2019.04.401.
|
[32] |
LIN S J, BHATTACHARYA P, RAJAPAKSE N C, et al. Effects of quantum dots adsorption on algal photosynthesis[J]. The Journal of Physical Chemistry C, 2009, 113(25): 10962-10966. DOI: 10.1021/jp904343s.
|
[33] |
TUNALI M, UZOEFUNA E N, TUNALI M M, et al. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris[J]. The Science of the Total Environment, 2020, 743: 140479. DOI: 10.1016/j.scitotenv.2020.140479.
|
[34] |
WU D, WANG T, WANG J, et al. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production[J]. The Science of the Total Environment, 2021, 761: 143265. DOI: 10.1016/j.scitotenv.2020.143265.
|
[35] |
XIAO Y, JIANG X F, LIAO Y C, et al. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae[J]. Chemosphere, 2020, 255: 126914. DOI: 10.1016/j.chemosphere.2020.126914.
|
[36] |
YAN Z, XU L M, ZHANG W M, et al. Comparative toxic effects of microplastics and nanoplastics on Chlamydomonas reinhardtii: growth inhibition, oxidative stress, and cell morphology[J]. Journal of Water Process Engineering, 2021, 43: 102291. DOI: 10.1016/j.jwpe.2021.102291.
|
[37] |
WU Y M, GUO P Y, ZHANG X Y, et al. Effect of microplastics exposure on the photosynthesis system of freshwater algae[J]. Journal of Hazardous Materials, 2019, 374: 219-227. DOI: 10.1016/j.jhazmat.2019.04.039.
pmid: 31005054
|
[38] |
MAHANA A, GULIY O I, MEHTA S K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: current status and future challenges[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111662. DOI: 10.1016/j.ecoenv.2020.111662.
|
[39] |
NIE J H, SHEN Y, ROSHDY M, et al. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis[J]. Nanotoxicology, 2021, 15(7): 885-904. DOI: 10.1080/17435390.2021.1930228.
|
[40] |
LIN J Q, ALEXANDER-KATZ A. Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics[J]. ACS Nano, 2013, 7(12): 10799-10808. DOI: 10.1021/nn4040553.
|
[41] |
VAN LEHN R C, ALEXANDER-KATZ A. Penetration of lipid bilayers by nanoparticles with environmentally-responsive surfaces: simulations and theory[J]. Soft Matter, 2011, 7(24): 11392-11404. DOI: 10.1039/C1SM06405C.
|
[42] |
王素春, 刘光洲, 张欢, 等. 微塑料对微藻的毒性效应研究进展[J]. 海洋环境科学, 2019, 38(2): 192-197.DOI: 10.13634/j.cnki.mes.2019.02.005.
|
[43] |
BHATTACHARYA P, LIN S J, TURNER J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16556-16561. DOI: 10.1021/jp1054759.
|