山东科学 ›› 2024, Vol. 37 ›› Issue (4): 56-64.doi: 10.3976/j.issn.1002-4026.20230149

• 新材料 • 上一篇    下一篇

基于优化神经网络的沥青混合料力学特性预估

王晓阳(), 万晨光, 王笑风   

  1. 河南省交通规划设计研究院股份有限公司,河南 郑州 450000
  • 收稿日期:2023-10-10 出版日期:2024-08-20 发布日期:2024-08-05
  • 作者简介:王晓阳(1992—),男,硕士,工程师,研究方向为道路结构与材料。E-mail: xywanghn@163.com
  • 基金资助:
    河南省交通运输厅科技项目(2020J-2-5)

Prediction of mechanical properties of asphalt mixtures based on optimized neural networks

WANG Xiaoyang(), WAN Chenguang, WANG Xiaofeng   

  1. Henan Communications Planning & Design Institute Co., Ltd., Zhengzhou 450000, China
  • Received:2023-10-10 Online:2024-08-20 Published:2024-08-05

摘要:

现有的沥青混合料疲劳寿命预估大多基于传统的疲劳方程拟合得到,但由于路面结构的多向性和材料的复杂性,其预测精度往往不尽人意。为了提高预测精度,在遗传算法的基础上对神经网络架构进行优化,通过室内间接拉伸试验建立了沥青混合料强度及疲劳寿命预估模型,并对预估模型的精度进行了验证。试验结果表明,采用遗传算法优化的神经网络用于预测沥青混合料疲劳力学特性精度误差在4%以内,远优于传统的疲劳预测方程,可以作为获取沥青混合料疲劳特性研究数据的一种有效方法。

关键词: 交通工程, 沥青混合料, 深度学习模型, 强度预测, 疲劳寿命预测

Abstract:

The existing fatigue life prediction of asphalt mixtures is mostly based on traditional fatigue equation fitting; however, due to the multidirectionality of pavement structure and the complexity of materials, the prediction accuracy is often not satisfactory. Therefore, this article establishes an optimized neural network-based model for predicting the strength and fatigue life of asphalt mixtures using indoor indirect tensile tests and verifies the accuracy of the prediction model. The experimental results show that the accuracy of Genetic Algorithm-Back Propagation neural network to predict the fatigue mechanical properties for asphalt mixture is within 4%, which is far superior to traditional fatigue prediction equations and can be used as an effective method to obtain data on the fatigue characteristics of asphalt mixtures.

Key words: traffic engineering, asphalt mixture, deep-learning model, strength prediction, fatigue life prediction

中图分类号: 

  • U411

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0