山东科学 ›› 2024, Vol. 37 ›› Issue (6): 1-11.doi: 10.3976/j.issn.1002-4026.20240019

• 海洋科技与装备 •    下一篇

基于小波变换与改进时间序列模型的船舶升沉运动预测方法

刘志臻1,2(), 黄鲁蒙2,3,*(), 孙亚鹏1,2, 张颖3, 刘振东3   

  1. 1.天水电气传动研究所集团有限公司,甘肃 天水 741020
    2.大型电气传动系统与装备技术国家重点实验室,甘肃 天水 741020
    3.中国石油大学(华东) 机电工程学院,山东 青岛 266580
  • 收稿日期:2024-01-25 出版日期:2024-12-20 发布日期:2024-12-05
  • 通信作者: *黄鲁蒙,男,博士,讲师,硕士生导师,研究方向为海洋工程装备、控制工程。E-mail:20170057@upc.edu.cn,Tel:18953273368
  • 作者简介:刘志臻(1986—),男,高级工程师,研究方向为油气装备设计及自动化。E-mail:liuzzqq@126.com
  • 基金资助:
    大型电气传动系统与装备技术国家重点实验室(天水电气传动研究所集团有限公司)开放基金课题(SKLLDJ032022004);山东省重点研发计划(重大科技创新工程)项目(2022CXGC020402);国家重点研发计划(2021YFB3401400)

Ship heave motion prediction method based on wavelet transform and improved time series model

LIU Zhizhen1,2(), HUANG Lumeng2,3,*(), SUN Yapeng1,2, ZHANG Ying3, LIU Zhendong3   

  1. 1. Tianshui Electric Transmission Research Institute Group Co., Ltd., Tianshui 741020, China
    2. State Key Laboratory of Large Electric Drive System and Equipment Technology, Tianshui 741020, China
    3. College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • Received:2024-01-25 Online:2024-12-20 Published:2024-12-05

摘要:

船舶升沉运动信号的检测滞后严重影响了海洋升沉补偿系统性能,通过对升沉运动进行准确预测可以有效改善系统的稳定性和实时性。为了提高预测模型的实用性,设计了自回归时间序列模型,具有计算效率高、编程简单的特点。在此基础上为了进一步解决该模型对非平稳复杂海况和预测时长适应性差的问题,引入小波多尺度分析方法,形成了一种基于小波变换与改进自回归的组合预测模型,通过对历史数据进行分解变换、重构、子序列预测及预测数据合成实现了对升沉运动的在线多步预测。对平稳随机波形和船舶实测非平稳波形的理论测试与实验结果表明:该组合模型具有良好的预测性能,能有效减少由于升沉运动信号检测滞后而引起的海洋升沉补偿系统控制误差。

关键词: 海洋工程, 升沉补偿, 时间序列预测, 小波变换

Abstract:

Lag in detecting ship heave motion signals severely affects the performance of ocean heave compensation systems. Therefore, accurate heave motion prediction can effectively improve the stability and real-time performance of these systems. To improve the engineering practicability of a heave motion prediction model, we designed an autoregressive time-series model featuring high calculation efficiency, simple programing, and a small accumulation error. Moreover, to further address the poor adaptability of the model to nonlinear and nonstationary complex sea conditions and long-term predictions, we developed a combined prediction model based on wavelet transform and improved autoregression using the wavelet multiscale analysis method and achieved online multistep prediction of heave motions by decomposing and transforming historical data, reconstructing sub-sequence prediction, and forecasting data synthesis. Finally, theoretical testing and experiments were conducted on stationary random waveforms and nonstationary waveforms measured on ships. The analysis results show that the combined model exhibits good prediction performance and can effectively reduce the control error of the ocean heave compensation system caused by the lag in the heave motion signal detection.

Key words: ocean engineering, heave compensation, time-series prediction, wavelet transformation

中图分类号: 

  • TE58

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0