[1] |
FENG Z Q, ZHANG Z M, YANG Y, et al. Prediction and analysis of the efficiency of the shuttle tank collection method to collect wrecked residual oil[J]. Ocean Engineering, 2023, 284: 115188. DOI: 10.1016/j.oceaneng.2023.115188.
|
[2] |
PARK M H, LEE W J. Marine oil spill analyses based on Korea Coast Guard big data from 2017 to 2022 and application of data-driven Bayesian Network[J]. Journal of Cleaner Production, 2024, 436: 140630. DOI: 10.1016/j.jclepro.2024.140630.
|
[3] |
JIANG Q, JI M, WANG J, et al. Remote sensing methods for striped marine oil spill detection in narrow ship channels[J]. Ocean Engineering, 2023, 289: 116162. DOI: 10.1016/j.oceaneng.2023.116162.
|
[4] |
MOHAMMADIUN S, GHARAHBAGH A A, BAKHTAVAR E, et al. Integrated optimization of marine oil spill response and liquid oily waste management using mathematical programming and evolutionary metaheuristic techniques[J]. Journal of Hazardous Materials, 2024, 463: 132838. DOI: 10.1016/j.jhazmat.2023.132838.
|
[5] |
FLORES-MEDINA P W, SEPP-NEVES A A, COPPINI G, et al. Strategic environmental sensitivity mapping for oil spill contingency planning in the Peruvian marine-coastal zone[J]. The Science of the Total Environment, 2022, 852: 158356. DOI: 10.1016/j.scitotenv.2022.158356.
|
[6] |
WU W Q, DU M, SHI H K, et al. Application of graphene aerogels in oil spill recovery: a review[J]. Science of the Total Environment, 2023, 856: 159107. DOI: 10.1016/j.scitotenv.2022.159107.
|
[7] |
QI M Y, WANG P L, HUANG L Z, et al. Cellulose nanofiber/MXene/luffa aerogel for all-weather and high-efficiency cleanup of crude oil spills[J]. International Journal of Biological Macromolecules, 2023, 242: 124895. DOI: 10.1016/j.ijbiomac.2023.124895.
|
[8] |
CHEN K W, ZHU J Y, TAN Y J, et al. Development of gradient-wetting Janus wood membrane with high-efficiency fog collection and oil-water separation[J]. Chemical Engineering Journal, 2023, 470: 144356. DOI: 10.1016/j.cej.2023.144356.
|
[9] |
ABABNEH H, HAMEED B H. Chitosan and chitosan composites for oil spills treatment: review of recent literature[J]. Journal of Water Process Engineering, 2023, 55: 104193. DOI: 10.1016/j.jwpe.2023.104193.
|
[10] |
TU P M, LIN T H, THANG T Q, et al. Waste plastic-derived aerogel modified with graphene oxide for hygroscopic material and oil spill treatment[J]. Journal of Molecular Structure, 2023, 1287: 135737. DOI: 10.1016/j.molstruc.2023.135737.
|
[11] |
YUE R Y, YE Z B, GAO S C, et al. Exploring the use of sodium caseinate-assisted responsive separation for the treatment of washing effluents in shoreline oil spill response[J]. The Science of the Total Environment, 2023, 873: 162363. DOI: 10.1016/j.scitotenv.2023.162363.
|
[12] |
STANLEY M, PALACE V, GROSSHANS R, et al. Floating treatment wetlands for the bioremediation of oil spills: a review[J]. Journal of Environmental Management, 2022, 317: 115416. DOI: 10.1016/j.jenvman.2022.115416.
|
[13] |
FENG Q, AN C J, CHEN Z, et al. Assessing the coastal sensitivity to oil spills from the perspective of ecosystem services: a case study for Canada’s Pacific coast[J]. Journal of Environmental Management, 2021, 296: 113240. DOI: 10.1016/j.jenvman.2021.113240.
|
[14] |
GUAN Y H, QIAO D, DONG L M, et al. Efficient recovery of highly viscous crude oil spill by superhydrophobic ocean biomass-based aerogel assisted with solar energy[J]. Chemical Engineering Journal, 2023, 467: 143532. DOI: 10.1016/j.cej.2023.143532.
|
[15] |
DHAKA A, CHATTOPADHYAY P. A review on physical remediation techniques for treatment of marine oil spills[J]. Journal of Environmental Management, 2021, 288: 112428. DOI: 10.1016/j.jenvman.2021.112428.
|
[16] |
WEN H, LIANG L Z, XU N Y, et al. Multi-functional self-cleaning superhydrophobic cotton fabric as photothermal-reinforced crude oil separator, oil skimmer and underwater oil absorbent[J]. Separation and Purification Technology, 2024, 337: 126258. DOI: 10.1016/j.seppur.2023.126258.
|
[17] |
KO S W, MOON J Y, BAE S M, et al. A sponge-type oil skimmer for highly efficient removal of floating oils: superabsorbent and oleophilic sponge with nano-scale interface roughness[J]. Applied Surface Science, 2022, 606: 154750. DOI: 10.1016/j.apsusc.2022.154750.
|
[18] |
PIAO L F, PARK C J, KIM S, et al. Development of rapid and effective oil-spill response system integrated with oil collection, recovery and storage devices for small oil spills at initial stage: from lab-scale study to field-scale test[J]. Journal of Environmental Management, 2023, 345: 118833. DOI: 10.1016/j.jenvman.2023.118833.
|
[19] |
PUGSLEY A, ZACHAROPOULOS A, SMYTH M, et al. Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration[J]. Renewable Energy, 2019, 137: 2-9. DOI: 10.1016/j.renene.2017.10.082.
|
[20] |
REDDY N S, SUBRAMANYA S G, VISHWANATH K C, et al. Enhancing the thermal efficiency of parabolic trough collector using rotary receiver tube[J]. Sustainable Energy Technologies and Assessments, 2022, 51: 101941. DOI: 10.1016/j.seta.2021.101941.
|
[21] |
MONTES M J, ABBAS R, BARBERO R, et al. A new design of multi-tube receiver for Fresnel technology to increase the thermal performance[J]. Applied Thermal Engineering, 2022, 204: 117970. DOI: 10.1016/j.applthermaleng.2021.117970.
|
[22] |
王晨芳, 韩龙喜, 张奕, 等. 波浪作用下溢油释放影响因素及机理研究[J]. 华中科技大学学报(自然科学版), 2024, 52(10): 130-135. DOI: 10.13245/j.hust.240125.
|
[23] |
BIE H Y, LI Y, ZHANG R H, et al. Effect of swirl flow on the bubble motion and spatial distribution in a venturi tube[J]. Chemical Engineering Journal, 2024, 480: 148341. DOI: 10.1016/j.cej.2023.148341.
|
[24] |
张晓光, 刘佳成, 徐保蕊, 等. 轴流式两级一体化水力旋流器结构参数优选[J]. 流体机械, 2023, 51(11): 71-78. DOI: 10.3969/j.issn.1005-0329.2023.11.011.
|
[25] |
XU Y, WU B, LUO P C. Investigation on the flow characteristics of a novel multi-blade combined agitator by time-resolved particle image velocimetry and large eddy simulation[J]. AIChE Journal, 2020, 66(8): e16277. DOI: 10.1002/aic.16277.
|