[1] |
LIANG Y C, SUN Z L, DONG M R, et al. Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine[J]. International Journal of Refrigeration, 2020, 118: 470-482. DOI: 10.1016/j.ijrefrig.2020.04.031.
|
[2] |
SINGH A S, CHOUDHARY T, SANJAY S. Thermal analysis of aircraft auxiliary power unit: potential of super-Critical CO2 brayton cycle[C]. Aero Tech Americas. 2019. DOI:10.4271/2019-01-1391.
|
[3] |
钱中. 微型换热器瞬态传热分析[J]. 压力容器, 2011, 28(9): 26-29. DOI: 10.3969/j.issn.1001-4837.2011.09.006.
|
[4] |
CABEZA L F, DE GRACIA A, FERNÁNDEZ A I, et al. Supercritical CO2 as heat transfer fluid: A review[J]. Applied Thermal Engineering, 2017, 125: 799-810. DOI: 10.1016/j.applthermaleng.2017.07.049.
|
[5] |
XIE J Z, LIU D C, YAN H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: Heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. DOI: 10.1016/j.ijheatmasstransfer.2019.119233.
|
[6] |
BOVARD S, ABDI M, NIKOU M R K, et al. Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes[J]. The Journal of Supercritical Fluids, 2017, 119: 88-103. DOI: 10.1016/j.supflu.2016.09.010.
|
[7] |
董文志, 韦武, 周亭羽, 等. 入口温度对倾斜圆管内超临界CO2的流动传热影响研究[J]. 计算机与数字工程, 2023, 51(9): 2165-2170. DOI: 10.3969/j.issn.1672-9722.2023.09.041.
|
[8] |
朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1291-1299. DOI: 10.11949/j.issn.0438-1157.20180695.
|
[9] |
庄晓如, 徐心海, 杨智, 等. 高温吸热管内超临界CO2传热特性的数值模拟[J]. 物理学报, 2021, 70(3): 170-182. DOI: 10.7498/aps.70.20201005.
|
[10] |
朱兵国, 张海松, 孙恩慧, 等. 超高参数CO2在垂直管中的传热分析[J]. 化工进展, 2019, 38(11): 4880-4889. DOI: 10.16085/j.issn.1000-6613.2019-0582.
|
[11] |
QIU Y, LI M J, HE Y L, et al. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux[J]. Applied Thermal Engineering, 2017, 115: 1255-1265. DOI: 10.1016/j.applthermaleng.2016.09.044.
|
[12] |
KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. DOI: 10.1016/j.nucengdes.2010.07.002.
|
[13] |
靳遵龙, 刘东来, 刘敏珊, 等. 超临界CO2冷却条件下水平微圆管中对流换热特性[J]. 压力容器, 2012, 29(7): 9-13. DOI: 10.3969/j.issn.1001-4837.2012.07.002.
|
[14] |
洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. DOI: 10.11949/0438-1157.20230472.
|
[15] |
朱兵国. 超临界二氧化碳垂直管内对流换热研究[D]. 北京: 华北电力大学, 2020.
|
[16] |
ZHANG Q, LI H X, LIU J L, et al. Numerical investigation of different heat transfer behaviors of supercritical CO2 in a large vertical tube[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118944. DOI: 10.1016/j.ijheatmasstransfer.2019.118944.
|
[17] |
LI D, XU X X, CAO Y, et al. The characteristics and mechanisms of self-excited oscillation pulsating flow on heat transfer deterioration of supercritical CO2 heated in vertical upward tube[J]. Applied Thermal Engineering, 2022, 202: 117839. DOI: 10.1016/j.applthermaleng.2021.117839.
|
[18] |
BAE Y Y, KIM H Y, KANG D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. DOI: 10.1016/j.expthermflusci.2010.06.001.
|
[19] |
闫晨帅. 超临界二氧化碳流动传热数值模拟研究[D]. 北京: 华北电力大学, 2021.
|
[20] |
尹少军. 圆管内超临界二氧化碳传热特性数值模拟[D]. 北京: 华北电力大学, 2021.
|
[21] |
朱鑫杰. 超临界CO2垂直上升和下降对流传热特性实验研究[D]. 北京: 华北电力大学, 2021.
|
[22] |
ZHANG Q, LI H X, KONG X F, et al. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux[J]. International Journal of Heat and Mass Transfer, 2018, 122: 469-482. DOI: 10.1016/j.ijheatmasstransfer.2018.01.112.
|
[23] |
LEI Y C, CHEN Z Q. Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels[J]. International Journal of Refrigeration, 2018, 90: 46-57. DOI: 10.1016/j.ijrefrig.2018.03.023.
|
[24] |
XIANG M R, GUO J F, HUAI X L, et al. Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J]. The Journal of Supercritical Fluids, 2017, 130: 389-398. DOI: 10.1016/j.supflu.2017.04.009.
|
[25] |
XU R N, LUO F, JIANG P X. Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements[J]. International Journal of Heat and Mass Transfer, 2017, 110: 576-586. DOI: 10.1016/j.ijheatmasstransfer.2017.03.063.
|
[26] |
张海松, 朱鑫杰, 朱兵国, 等. 浮升力和流动加速对超临界CO2管内流动传热影响[J]. 物理学报, 2020, 69(6): 136-145. DOI: 10.7498/aps.69.20191521.
|
[27] |
刘光旭, 黄彦平, 王俊峰, 等. 浮升力和流动加速效应对超临界CO2传热影响研究[J]. 核动力工程, 2016, 37(2): 48-51. DOI: 10.13832/j.jnpe.2016.02.0048.
|
[28] |
LIU S, HUANG Y P, LIU G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106:1144-1156.
|
[29] |
黄宇, 段伦博. 超临界流体流动加速效应及其判别式研究进展[J]. 动力工程学报, 2022, 42(1): 94-100. DOI: 10.19805/j.cnki.jcspe.2022.01.012.
|
[30] |
JACKSON J D, HALL W B. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Institution of Mechanical Engineers, Conference Publications, 1979, 2: 613-640.
|
[31] |
MCELIGOT D M, COON C W, PERKINS H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433. DOI: 10.1016/0017-9310(70)90118-3.
|