山东科学 ›› 2014, Vol. 27 ›› Issue (4): 75-84.doi: 10.3976/j.issn.1002-4026.2014.04.014
仇大伟,刘静
QIU Da-wei, LIU Jing
摘要:
提出一种在复杂场景及目标遮挡情况下,特别是目标外形、大小发生变化时的基于SURF的目标跟踪和在线目标模型更新算法。该算法利用SURF对尺度缩放、光照变化和旋转等具有较好鲁棒性的特点,首先提取跟踪目标的SURF特征点,以特征点及其邻域的R、G、B直方图表示目标;然后根据目标在连续的帧中相似性较大的特点,搜索当前帧中的目标最优匹配SURF特征点,由目标特征及目标模型计算其准确大小和位置,并根据变化了的目标状态更新目标模型。实验结果表明,该算法可准确地定位到目标。
中图分类号:
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0