|
[1] 王治文,何大军,龚国彬,等.电动自行车标准GB 17761-2018解读[J].汽车实用技术,2018,(20):258-260.
DOI:10.16638/j.cnki.1671-7988.2018.20.095.
[2] 赵立波,王秋鸿,郝成宇.开车门操作不当引发交通事故特征及原因分析[J].汽车与安全,2023,(7):71-74.
[3] 杨紫辉,江磊,任洪娟.基于改进YOLOv3网络的非机动车检测[J].智能计算机与应用.2021,(8):87-91. DOI: 10.3969/j.issn.2095-2163.2021.08.019
[4] 王树凤,梁庆伟,王宇航,等.基于YOLO算法的非机动车辆检测模型[J].汽车工程师,2024,(08):8-14.DOI:10.20104/j.cnki.1674-6546.20240223.
[5] 叶佳林.基于单阶段目标检测模型的非机动车检测与识别方法[D].南京:南京理工大学,
2022.
[6] 马超凡,李翔,王晓霞,等.基于重参数化的轻量化非机动车目标检测[J].计算机工程与应用.2024,(19):190-198. DOI: 10.3778/j.issn.1002-8331.2403-0292
[7] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,
real-time object detection[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016: 779-788.
[8] HE K, ZHANG X, REN S, et al. Deep residual learning for image
recognition[C]//Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016: 770-778. DOI: 10.1109/cvpr.2016.90
[9] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient
convolutional neural networks for mobile vision applications[J]. arXiv preprint
arXiv:1704.04861, 2017.
[10] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for
object detection[C]//Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
[11] LIU S, QI L, QIN H, et al. Path aggregation network for instance
segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. DOI:
doi:10.1109/cvpr.2018.00913
[12] TAN M, PANG R, LE Q V. EfficientDet: Scalable and efficient object
detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Seattle: IEEE, 2020: 10781-10790.DOI:
10.1109/cvpr42600.2020.01079
[13] HAN K, WANG Y, TIAN Q, et al. GhostNet: More features from cheap
operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Seattle: IEEE, 2020: 1580-1589.DOI:
10.1109/cvpr42600.2020.00165
|