山东科学 ›› 2025, Vol. 38 ›› Issue (3): 132-138.doi: 10.3976/j.issn.1002-4026.2025042

• 海洋信息 • 上一篇    

基于改进双向RRT*的无人船路径规划

王兴民1(), 刘瑞雪1, 李倩1, 张伟忠1,*(), 董巍2   

  1. 1.齐鲁工业大学(山东省科学院) 自动化研究所,山东 济南 250014
    2.齐鲁工业大学(山东省科学院) 海洋仪器仪表研究所,山东 青岛 266061
  • 收稿日期:2025-04-21 出版日期:2025-06-20 发布日期:2025-06-26
  • 通信作者: 张伟忠 E-mail:10431230549@stu.qlu.edu.cn;zhangwz@sdas.org
  • 作者简介:王兴民(2000—),男,硕士研究生,研究方向为欠驱动无人船轨迹跟踪。E-mail: 10431230549@stu.qlu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2024QF114);齐鲁工业大学(山东省科学院)科教产融合试点工程重大创新专项项目(2023HYZX01)

Path planning for unmanned surface vehicles based on an improved bidirectional RRT* algorithm

WANG Xingmin1(), LIU Ruixue1, LI Qian1, ZHANG Weizhong1,*(), DONG Wei2   

  1. 1. Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
    2. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China
  • Received:2025-04-21 Online:2025-06-20 Published:2025-06-26
  • Contact: ZHANG Weizhong E-mail:10431230549@stu.qlu.edu.cn;zhangwz@sdas.org

摘要:

无人船是一种新型的无人多功能海洋监测平台,路径规划作为其核心技术,在其运行中发挥着至关重要的作用。随着海上交通密度持续增长和航行安全标准升级,传统的路径规划方法在复杂环境适应性不足问题愈发严重。该研究针对双向RRT*算法在无人船路径规划中的局限性,提出多维度改进方案,建立基于环境特征感知的自适应步长调节机制,设计了关键节点筛选策略,最后使用贝塞尔曲线对产生的路径进行平滑处理,生成更加符合无人船运动学要求的平滑曲线。仿真结果表明,改进后的双向RRT*算法相比传统双向RRT*算法具有更高的节点生成效率,更优的整体性能和更平滑的路径。

关键词: 无人船, 海洋监测, 路径规划, 双向RRT*, 自适应步长, 贝塞尔曲线, 关键节点筛选

Abstract:

Oceans are not only super-ecosystems but also strategic resource reservoirs, and thus, ocean monitoring is crucial. Unmanned surface vehicles (USVs) are new types of multifunctional unmanned platforms for ocean monitoring, and path planning plays a crucial role as a core technology in their operation. With the continuous increase in maritime traffic density and upgrading of navigation safety standards, traditional path planning methods are facing growing challenges in adapting to complex environments. In this study, a multidimensional improvement strategy is proposed to address the limitations of the bidirectional rapidly-exploring random tree star(Bi-RRT*) algorithm in USV path planning. First, an adaptive step-size adjustment mechanism, based on environmental feature perception, is established; second, a key node selection strategy is designed; and finally, Bezier curves are used to smooth the generated path, producing a smoother trajectory that better meets the kinematic requirements of USVs. Simulation results show that the improved bidirectional RRT* algorithm outperforms its traditional counterpart in terms of node-generation efficiency, overall performance, and path smoothness.

Key words: unmanned surface vehicles, ocean monitoring, path planning, bidirectional RRT*, adaptive step-size, Bezier Curve, key node selection

中图分类号: 

  • P715

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0