|
[1] 贺韵竹, 贾鹏, 李海江, 等. 新型需求响应公交发车时刻和票价优化[J]. 系统工程理论与实践,
2022, 42(4):1060-1071. DOI:10.12011/SETP2021-1149.
[2] BERRADA J, POULHÈS
A. Economic and socioeconomic assessment of replacing conventional public
transit with demand responsive transit services in low-to-medium density
areas[J]. Transportation Research Part A: Policy and Practice, 2021, 150:
317-334. DOI: 10.1016/j.tra.2021.06.008.
[3] Pieter V, Lissa M, Dilay A, et al. A survey on demand-responsive public bus systems[J].
Transportation Research Part C, 2022, 137: 103573.
[4] CALABRÒ G, ARALDO
A, OH S, et al. Adaptive transit design: Optimizing fixed and demand responsive
multi-modal transportationviacontinuous approximation[J]. Transportation Research Part A: Policy and
Practice, 2023, 171: 103643. DOI: 10.1016/j.tra.2023.103643.
[5]
TANG X D, YANG J, LIN X, et al. Dynamic
operations of an integrated mobility service system of fixed-route transits and
flexible electric buses[J]. Transportation Research Part E: Logistics and
Transportation Review, 2023, 173: 103081. DOI: 10.1016/j.tre.2023.103081.
[6] 搜狐网. 新区公交难等 “上来容易下去难”[EB/OL]. [2024-06-14].
https://www.sohu.com/a/232706120_394265.
[7] 束涵, 周丹旎. 浦东定制公交开了又停:“公交”的公益性和“定制”的市场化,能否调和[EB/OL]. [2024-06-14].
https://www.jfdaily.com/news/detail id=198915.
[8] 裴丰瑶. 问政回声丨乘客反映泾渭定制公交买票难 交通部门:将增配运力[EB/OL].
[2024-06-14]. https://www.sohu.com/a/232706120_394265.
[9] QUADRIFOGLIO L, LI
X G. A methodology to derive the critical demand density for designing and
operating feeder transit services[J]. Transportation Research Part B:
Methodological, 2009, 43(10): 922-935. DOI: 10.1016/j.trb.2009.04.003.
[10] LI X G,
QUADRIFOGLIO L. Feeder transit services: Choosing between fixed and demand
responsive policy[J]. Transportation Research Part C: Emerging Technologies,
2010, 18(5): 770-780. DOI: 10.1016/j.trc.2009.05.015.
[11] NOURBAKHSH S M,
OUYANG Y F. A structured flexible transit system for low demand areas[J].
Transportation Research Part B: Methodological, 2012, 46(1): 204-216. DOI:
10.1016/j.trb.2011.07.014.
[12] PETIT A, OUYANG Y
F. Design of heterogeneous flexible-route public transportation networks under
low demand[J]. Transportation Research Part C: Emerging Technologies, 2022,
138: 103612. DOI: 10.1016/j.trc.2022.103612.
[13] KIM M (, LEVY J,
SCHONFELD P. Optimal zone sizes and headways for flexible-route bus
services[J]. Transportation Research Part B: Methodological, 2019, 130: 67-81.
DOI: 10.1016/j.trb.2019.10.006.
[14] QIU F, SHEN J X,
ZHANG X C, et al. Demi-flexible operating policies to promote the performance
of public transit in low-demand areas[J]. Transportation Research Part A:
Policy and Practice, 2015, 80: 215-230. DOI: 10.1016/j.tra.2015.08.003.
[15]
ATASOY B, IKEDA T, SONG X, et al. The concept and
impact analysis of a flexible mobility on demand system[J]. Transportation
Research Part C: Emerging Technologies, 2015, 56: 373-392. DOI:
10.1016/j.trc.2015.04.009.
[16] MISHRA S, MEHRAN
B. Cost analysis of different vehicle technologies for semi-flexible transit
operations[J]. Transportation Research Part D: Transport and Environment, 2024,
130: 104159. DOI: 10.1016/j.trd.2024.104159.
[17]
CALABRÒ G, LE PIRA M, GIUFFRIDA N, et al. Designing
demand responsive transport services in small-sized cities using an agent-based
model[J]. Transportation Research Procedia, 2023, 69: 759-766. DOI:
10.1016/j.trpro.2023.02.233.
[18] LEE E, CEN X K,
LO H K, et al. Designing zonal-based flexible bus services under stochastic
demand[J]. Transportation Science, 2021, 55(6): 1280-1299. DOI:
10.1287/trsc.2021.1054.
[19] FU L P. Planning
and design of flex-route transit services[J]. Transportation Research Record:
Journal of the Transportation Research Board, 2002, 1791(1): 59-66. DOI:
10.3141/1791-09.
[20] LI X, QUADRIFOGLIO L. Optimal zone design for feeder
transit services[J]. Transportation Research Record, 2009, 2111(1): 100-108.
[21] SHI H G, GAO M Y.
Analysis of a flexible transit network in a radial street pattern[J]. Journal
of Advanced Transportation, 2020, 2020(1): 5379218. DOI: 10.1155/2020/5379218.
[22] BADIA H, ESTRADA
M, ROBUSTÉ F. Competitive transit network design in cities with radial street
patterns[J]. Transportation Research Part B: Methodological, 2014, 59: 161-181.
DOI: 10.1016/j.trb.2013.11.006.
[23] ZHAO J M,
DESSOUKY M. Service capacity design problems for mobility allowance shuttle
transit systems[J]. Transportation Research Part B: Methodological, 2008,
42(2): 135-146. DOI: 10.1016/j.trb.2007.07.002.
[24] SMITH B, DEMETSKY
M, DURVASULA P. A multiobjective optimization model for flexroute transit
service design[J]. Journal of Public Transportation, 2003, 6(1): 81-100. DOI:
10.5038/2375-0901.6.1.5.
[25] HESS P M, VERNEZ
MOUDON A, CATHERINE SNYDER M, et al. Site design and pedestrian travel[J].
Transportation Research Record: Journal of the Transportation Research Board,
1999, 1674(1): 9-19. DOI: 10.3141/1674-02.
[26] EWING R, CERVERO
R. Travel and the built environment[J]. Journal of the American Planning
Association, 2010, 76(3): 265-294. DOI: 10.1080/01944361003766766.
[27] JACOBS J. The
death and life of great American Cities[M]. [New York]: Random House, 1961.
[28]
SANGVERAPHUNSIRI T, CASSIDY M J, DAGANZO C F. Jitney-lite: A flexible-route
feeder service for developing countries[J]. Transportation Research Part B:
Methodological, 2022, 156: 1-13. DOI: 10.1016/j.trb.2021.12.015.
[29] 刘鹏, 李成, 崔丁松, 等. 纯电动城市客车实际能耗及影响因素大数据分析[J].
客车技术与研究,
2022, 44(1): 56-59.
[30] 郭晓俊. 基于需求响应的实时定制公交系统研究[D]. 北京: 北京交通大学, 2016. |