山东科学 ›› 2025, Vol. 38 ›› Issue (5): 93-103.doi: 10.3976/j.issn.1002-4026.20240147

• 交通运输 • 上一篇    下一篇

融合突变点校正的PELT-GM-SARIMA公路货运周转量组合预测模型

李晓为(), 侯树展(), 牛文迪, 崔娜   

  1. 济南大学 土木建筑学院,山东 济南 250022
  • 收稿日期:2024-12-11 修回日期:2025-01-25 出版日期:2025-10-20 上线日期:2025-10-11
  • 通信作者: *侯树展(1983—),男,讲师,博士,硕士生导师,研究方向为公路交通安全理论、技术与决策。E-mail:cea_housz@ujn.edu.cn
  • 作者简介:李晓为(1998—),男,硕士,研究方向为公路货运安全技术。E-mail:lixiaowei5018@163.com
  • 基金资助:
    山东省自然科学基金项目(ZR2024MG033)

A PELT-GM-SARIMA combined forecasting model for highway freight turnover with integrated change-point correction

LI Xiaowei(), HOU Shuzhan(), NIU Wendi, CUI Na   

  1. School of Civil Engineering and Architecture,University of Jinan,Jinan 250022,China
  • Received:2024-12-11 Revised:2025-01-25 Published:2025-10-20 Online:2025-10-11

摘要:

为克服单一模型预测精度的不足以及组合模型处理数据异常波动时的窘境,提出了一种融合突变点校正的PELT-GM-SARIMA组合模型预测方法。该方法使用PELT算法检测货运周转量数据的波动性,并甄别出突变点;利用灰色GM(1,1)模型进行突变点异常值的修正,使数据更能满足SARIMA模型对数据平稳性和纯随机性的要求;最后以优化后的数据集为基础,利用SARIMA模型进行数值预测。该文以北京市的货运周转量数据为例,对比不同组合模型的预测结果发现,PELT-GM-SARIMA组合模型的均方误差值、平均绝对误差值均有所下降,决定系数也更接近1。PELT-GM-SARIMA组合预测模型结构简单,对数据缺失、异常值较多的时间序列数据具有更好的适应性,预测结果更精准,能够为公路交通规划、投资决策等过程的交通预测提供一个更优的途径。

关键词: 运输经济, PELT-GM-SARIMA模型, 货运周转量, 突变点校正, 交通规划

Abstract:

To address the limited accuracy of single-model forecasting and challenges faced by combined models in handling abnormal data fluctuations,this study proposes a novel forecasting method integrating mutation point correction into a pruned exact linear time (PELT)-grey prediction model(GM)-seasonal autoregressive integrated moving average (SARIMA) combined model. This method initially employs the PELT algorithm to detect fluctuations in freight turnover data and identify change points. The Grey GM(1,1) model is then used to correct anomalies at these change points,enabling the dataset to better meet the stationarity and randomness requirements for the SARIMA model. Finally,based on the optimized dataset,the SARIMA model is used to perform predictions on the refined data. Using freight turnover data from Beijing as a case study,comparative analysis of different hybrid models reveals that the proposed model exhibits superior performance than other combined models,with significant reductions in mean squared error and mean absolute error and a coefficient of determination close to 1. The PELT-GM-SARIMA model is structurally simple and can better adapt to time-series data with missing values or frequent anomalies,resulting in more accurate predictions. This study presents a more effective approach for traffic predictions in highway transportation planning and investment decision making.

Key words: transportation economics, PELT-GM-SARIMA model, freight turnover, change-point correction, transportation planning

中图分类号: 

  • U491.1

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0