山东科学 ›› 2020, Vol. 33 ›› Issue (4): 34-45.doi: 10.3976/j.issn.1002-4026.2020.04.006
吴远征a,李金萍b,李丹丹b,刘宝军a,扈进冬a,李纪顺a,杨合同b*
收稿日期:
2019-10-08
出版日期:
2020-07-27
发布日期:
2020-07-28
通信作者:
杨合同(1966—),男,研究员,研究方向为生物农药、生物肥料等。E-mail:yanght@sdas.org
作者简介:
吴远征(1979—),男,副研究员,研究方向为环境微生物。E-mail:wuyzh@sdas.org
基金资助:
WU Yuan-zhenga, LI Jin-pingb, LI Dan-danb, LIU Bao-juna, HU Jin-donga, LI Ji-shuna, YANG He-tongb*
Received:
2019-10-08
Online:
2020-07-27
Published:
2020-07-28
摘要: 微生物共生普遍存在于自然界中,真菌-细菌联合体能以多种方式相互作用,共同发挥各种生态功能。有些细菌驻留在真菌菌丝内部,借以调控真菌的生长、发育、分布和次级代谢过程,这些细菌被称为菌丝内生细菌(endohyphal bacteria, EHB)。EHB的研究揭开了微生物生态学的一个新篇章,是真菌与细菌共生关系中最紧密的代表。在逆境条件下,EHB可以调节寄主生殖机制相关的关键成分或步骤,诱导植物激素类物质的产生,对寄主真菌具有辅助性保护作用。研究最深入的真菌-EHB共生体系是植物致病性根霉菌Rhizopus sp.与伯克霍尔德氏菌Burkholderia sp.,引起水稻幼苗枯萎病所必需的植物毒素——根霉素是由伯克霍尔德氏菌所产生的,而非寄主根霉菌本身产生的。EHB也会影响定殖于高等植物的内生真菌的生态和多样性。在某些情况下,EHB还有助于激活参与识别、转录调节和初级代谢蛋白合成过程的相关基因。目前已开发出了无菌培养分离EHB的方法,然而对真菌-EHB共生体系的研究尚不够深入。综述了菌丝内生细菌EHB及其与宿主真菌的共生体系,阐述这些伴侣之间复杂微妙的相互关系,以及EHB对宿主真菌和宿主植物生长和发育的影响,并对该领域的研究方向提出了建议。
中图分类号:
吴远征, 李金萍, 李丹丹, 刘宝军, 扈进冬, 李纪顺, 杨合同. 菌丝内生细菌及其宿主真菌共生体系研究进展[J]. 山东科学, 2020, 33(4): 34-45.
WU Yuan-zheng, LI Jin-ping, LI Dan-dan, LIU Bao-jun, HU Jin-dong, LI Ji-shun, YANG He-tong. Research progress on endohyphal bacteria and their symbiosis with host fungi[J]. Shandong Science, 2020, 33(4): 34-45.
1 |
GUO Y, NARISAWA K.Fungus-Bacterium symbionts promote plant health and performance[J]. Microbes and Environments, 2018, 33(3): 239-241.
doi: 10.1264/jsme2.ME3303rh |
2 |
WEBSTER N S. Cooperation, communication, and co-evolution: grand challenges in microbial symbiosis research[J]. Frontiers in Microbiology, 2014, 5: 164.
doi: 10.3389/fmicb.2014.00164 |
3 | MARGULIS L. Symbiosis in cell evolution:Microbial communities in the archaean and proterozoic eons[M]. New York,US: W.H. Freeman & Co Ltd,1993:57-66. |
4 |
RUBY E. Microbiology: We get by with a little help from our (little) friends[J]. Science, 2004, 303(5662): 1305-1307.
doi: 10.1126/science.1094662 |
5 |
BONFANTE P, ANCA I A. Plants, mycorrhizal fungi, and bacteria: a network of interactions[J]. Annual Review of Microbiology, 2009, 63(1): 363-383.
doi: 10.1146/annurev.micro.091208.073504 |
6 |
SCHERLACH K, GRAUPNER K, HERTWECK C. Molecular bacteria-fungi interactions: effects on environment, food, and medicine[J]. Annual Review of Microbiology, 2013, 67(1): 375-397.
doi: 10.1146/annurev-micro-092412-155702 |
7 |
BONFANTE P, DESIRO A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota[J]. The ISME Journal, 2017, 11(8): 1727-1735.
doi: 10.1038/ismej.2017.21 |
8 |
BERTAUX J, SCHMID M, HUTZLER P, et al. Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N[J]. Environmental Microbiology, 2005, 7(11): 1786-1795.
doi: 10.1111/j.1462-2920.2005.00867.x |
9 |
TOLJANDER J F, ARTURSSON V, PAUL L R, et al. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species[J]. FEMS Microbiology Letters, 2006, 254(1): 34-40.
doi: 10.1111/j.1574-6968.2005.00003.x |
10 |
GUO Y, MATSUOKA Y, NISHIZAWA T, et al. Effects of Rhizobium species living with the dark septate endophytic fungus Veronaeopsis simplex on organic substrate utilization by the host[J]. Microbes and Environments, 2018, 33(1): 102-106.
doi: 10.1264/jsme2.ME17144 |
11 |
PARTIDA-MARTINEZ L P, HERTWECK C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production[J]. Nature, 2005, 437(7060): 884-888.
doi: 10.1038/nature03997 |
12 |
WEISS M, SYKOROVA Z, GARNICA S, et al. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes[J]. PLoS One, 2011, 6(2): e16793.
doi: 10.1371/journal.pone.0016793 |
13 |
JOHNSON J M, SHERAMETI I, NONGBRI P L, et al. Standardized conditions to study beneficial and nonbeneficial traits in the piriformospora indica/Arabidopsis thaliana interaction[M]//Soil Biology. Berlin, Heidelberg: Springer, 2013: 325-343.
doi: 10.1007/978-3-642-33802-1_20 |
14 |
VANNINI C, CARPENTIERIA, SALVIOLI A, et al. An interdomain network: The endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts[J]. New Phytologist, 2016, 211(1): 265-275.
doi: 10.1111/nph.13895 |
15 |
UEHLING J, GRYGANSKYI A, HAMEED K, et al. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens[J]. Environmental Microbiology, 2017, 19(8): 2964-2983.
doi: 10.1111/1462-2920.13669 |
16 |
SKILLINGS D. Holobionts and the ecology of organisms: Multi-species communities or integrated individuals?[J]. Biology & Philosophy, 2016, 31(6): 875-892.
doi: 10.1007/s10539-016-9544-0 |
17 |
KOBAYASHI D Y, CROUCH J A. Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts[J]. Annual Review of Phytopathology, 2009, 47(1): 63-82.
doi: 10.1146/annurev-phyto-080508-081729 |
18 |
HOFFMAN M T, ARNOLD A E. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes[J]. Applied and Environmental Microbiology, 2010, 76(12):4063-4075.
doi: 10.1128/AEM.02928-09 |
19 |
MOSSE B. Honey-coloured, sessile Endogone spores: II. Changes in fine structure during spore development[J]. Archiv Für Mikrobiologie, 1970, 74(2): 129-145.
doi: 10.1007/bf00446901.x |
20 |
MACDONALD R M, CHANDLER M R. Bacterium-like organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius[J]. New Phytologist, 1981, 89(2): 241-246.
doi: 10.1111/j.1469-8137.1981.tb07486.x |
21 |
ARORA P, RIYAZULHASSAN S. Endohyphal bacteria;the prokaryotic modulators of host fungal biology[J]. Fungal Biology Reviews, 2019, 33(1): 72-81.
doi: 10.1016/j.fbr.2018.08.003 |
22 | WILSON J, HANTON W. Bacteria-like structures in fungi[M]// Viruses and Plasmids in Fungi.New York,US: Marcel Dekker Inc., 1979:525-537. |
23 |
MACDONALD R M, CHANDLER M R, MOSSE B. The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi[J]. New Phytologist, 1982, 90(4): 659-663.
doi: 10.1111/j.1469-8137.1982.tb03275.x |
24 | SCANNERINI S, BONFANTE P. Bacteria and bacteria-like objects in endomycorrhizal fungi (Glomaceae)[M]//Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. Cambridge, US: MIT press, 1991:273-287. |
25 |
GARBAYE J. Tansley review no. 76 helper bacteria: a new dimension to the mycorrhizal symbiosis[J]. New Phytologist, 1994, 128(2): 197-210.
doi: 10.1111/j.1469-8137.1994.tb04003.x |
26 |
DUPONNOIS R,GARBAYE J.Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis:effects in aseptic and in glasshouse conditions[J].Annales Des Sciences Forestières,1991,48(3):239-251.
doi: 10.1051/forest:19910301 |
27 |
OLIVEIRA V L, GARBAYE J. Les microorganismes auxiliaires de I’établissement des symbioses mycorhiziennes[J]. Forest Pathology, 1989, 19(1): 54-64.
doi: 10.1111/j.1439-0329.1989.tb00769.x |
28 |
FITTER A H, GARBAYE J. Interactions between mycorrhizal fungi and other soil organisms[J]. Plant and Soil, 1994, 159(1): 123-132.
doi: 10.1007/BF00000101 |
29 |
FREY-KLETTP, GARBAYE J, TARKKA M. The mycorrhiza helper bacteria revisited[J].The New Phytologist, 2007, 176(1): 22-36.
doi: 10.1111/j.1469-8137.2007.02191.x |
30 |
POOLE E J, BENDING G D, WHIPPS J M, et al. Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro[J]. New Phytologist, 2001, 151(3): 743-751.
doi: 10.1046/j.0028-646x.2001.00219.x |
31 |
DUPONNOIS R. Bacteria helping mycorrhiza development[M]//Soil Biology. Berlin,Heidelberg: Springer,2006 : 297-310.
doi: 10.1007/3-540-29420-1_15 |
32 |
HOFFMAN M T, GUNATILAKA M K, WIJERATNE K, et al. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte[J]. PLoS One, 2013, 8(9): e73132.
doi: 10.1371/journal.pone.0073132 |
33 | RUIZ-LOZANO J M, BONFANTE P. Identification of a putative P-transporter operon in the genome of a Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita[J]. Journal of Bacteriology,1999,181(13): 4106-4109. |
34 |
PAKVAZ S, SOLTANI J. Endohyphal bacteria fromfungal endophytes of the Mediterranean cypress(Cupressus sempervirens) exhibit in vitro bioactivity[J]. Forest Pathology, 2016, 46(6): 569-581.
doi: 10.1111/efp.12274 |
35 |
DEVEAU A, BRULE C, PALIN B, et al. Role of fungal trehalose and bacterial thiaminein the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper Bacterium Pseudomonas fluorescens BBc6R8[J]. Environmental Microbiology Reports, 2010, 2(4): 560-568.
doi: 10.1111/j.1758-2229.2010.00145.x |
36 |
MONDOS J, LASTOVETSKY O A, GASPAR M L, et al. Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi[J]. Nature Communications, 2017, 8: 1843.
doi: 10.1038/s41467-017-02052-8 |
37 |
PARTIDA-MARTINEZ L P, MONAJEMBASHI S, GREULICH K O, et al. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism[J]. Current Biology, 2007, 17(9): 773-777.
doi: 10.1016/j.cub.2007.03.039 |
38 |
LACKNER G, PARTIDA-MARTINEZ L P, HERTWECK C. Endofungal bacteria as producers of mycotoxins[J]. Trends in Microbiology, 2009, 17(12): 570-576.
doi: 10.1016/j.tim.2009.09.003 |
39 |
SCHERLACH K, BUSCH B, LACKNER G, et al. Symbiotic cooperation in the biosynthesis of a phytotoxin[J]. Angewandte Chemie(international ed.in English), 2012, 51(38): 9615-9618.
doi: 10.1002/anie.201204540 |
40 |
TSURUO T, OH-HARA T, IIDA H, et al. Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine resistant sublines[J]. Cancer Research,1986,46(1): 381-385.
doi: 10.1016/0304-3835(86)90139-4 |
41 |
TAKAHASHI M, IWASAKI S, KOBAYASHI H, et al. Studies on macrocyclic lactone antibiotics[J]. Journal of Antibiotics,1987,40(1): 66-72.
doi: 10.7164/antibiotics.40.66 |
42 |
TAKAHASHI M, IWASAKI S, KOBAYASHI H, et al.Rhizoxin binding to tubulin at the maytansine-binding site[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 1987, 926(3): 215-223.
doi: 10.1016/0304-4165(87)90206-6 |
43 |
SCHMITT I, PARTIDA-MARTINEZ L P, WINKLER R, et al. Evolution of host resistance in a toxin-producing bacterial-fungal alliance[J]. The ISME Journal, 2008, 2(6): 632-641.
doi: 10.1038/ismej.2008.19 |
44 |
LACKNER G, MOEBIUS N, HERTWECK C. Endofungal Bacterium controls its host by an hrp type III secretion system[J]. The ISME Journal, 2011, 5(2): 252-261.
doi: 10.1038/ismej.2010.126 |
45 |
WEINER R, LANGILLE S, QUINTERO E. Structure, function and immunochemistry of bacterial exopolysaccharides[J]. Journal of Industrial Microbiology, 1995, 15(4): 339-346.
doi: 10.1007/bf01569989 |
46 | LEPEK V, D’ANTUONO A. Bacterial surface polysaccharides and their role in the rhizobia-legume association[J]. Lotus Newslett,2005,35(1): 93-105. |
47 |
LEONE M R, LACKNER G, SILIPO A, et al. An unusual galactofuranose lipopolysaccharide that ensures the intracellular survival of toxin-producing bacteria in their fungal host[J]. Angewandte Chemie(international ed.in English), 2010, 49(41):7476-7480.
doi: 10.1002/ange.201003301 |
48 |
UZUM Z, SILIPO A, LACKNER G, et al. Structure, genetics and function of an exopolysaccharide produced by a bacterium living within fungal hyphae[J]. ChemBioChem, 2015, 16(3): 387-392.
doi: 10.1002/cbic.201402488 |
49 |
SATO Y, HOSOKAWA K, FUJIMURA R, et al. Nitrogenase activity (acetylene reduction) of an iron-oxidizing Leptospirillum strain cultured as a pioneer microbe from a recent volcanic deposit on miyake-Jima, Japan[J]. Microbes and Environments, 2009, 24(4): 291-296.
doi: 10.1264/jsme2.ME09139 |
50 |
SATO Y, NARISAWA K, TSURUTA K, et al. Detection of betaproteobacteria inside the mycelium of the fungus Mortierella elongata[J]. Microbes and Environments, 2010, 25(4): 321-324.
doi: 10.1264/jsme2.ME10134 |
51 |
OHSHIMA S, SATO Y, FUJIMURA R, et al. Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(5): 2052-2057.
doi: 10.1099/ijsem.0.000990 |
52 |
SHARMIN D, GUO Y, NISHIZAWA T, et al. Comparative genomic insights into endofungal lifestyles of two bacterial endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica[J]. Microbes and Environments, 2018, 33(1): 66-76.
doi: 10.1264/jsme2.me17138 |
53 | KNAPP E.Uber Geosiphon pyriforme Fr. Wettst., eine intrazellulare Pilz-Algen-Symbiose[J]. Berichte Der Deutschen Botanischen Gesellschaft,1933,51: 210-217. |
54 |
KLUGE M. A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis[J]. Biology & Environment: Proceedings of the Royal Irish Academy, 2002, 102(1): 11-14.
doi: 10.3318/bioe.2002.102.1.11 |
55 |
SCHUBLER A. Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi[J].Pland and Soil,2002,244(1/2):75-83.
doi: 10.1023/A:1020238728910 |
56 |
SCHUBLER A. 5 the Geosiphon-Nostoc endosymbiosis and its role as a model for arbuscular mycorrhiza research[M]//Fungal Associations. Berlin,Heidelberg:Springer, 2012: 77-91.
doi: 10.1007/978-3-642-30826-0-5 |
57 | BIANCIOTTO V, BANDI C, MINERDI D, et al. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria[J]. Applied and Environmental Microbiology, 1996, 62(8): 3005-3010. |
58 |
BIANCIOTTO V,LUMINI E,BONFANTE P,et al. ‘Candidatus Glomeribacter gigasporarum’ gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(1): 121-124.
doi: 10.1099/ijs.0.02382-0 |
59 |
SALVIOLI A, GHIGNONE S, NOVERO M, et al. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential[J]. The ISME Journal, 2016, 10(1): 130-144.
doi: 10.1038/ismej.2015.91 |
60 |
NAUMANN M, SCHUBLER A, BONFANTE P. The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes[J]. The ISME Journal, 2010, 4(7): 862-871.
doi: 10.1038/ismej.2010.21 |
61 |
DESIRO A, NAUMANN M, EPIS S, et al. Mollicutes-related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi[J]. Environmental Microbiology, 2013, 15(3): 822-836.
doi: 10.1111/j.1462-2920.2012.02833.x |
62 |
DESIRO A, SALVIOLI A, NGONKEU E L, et al. Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi[J]. The ISME Journal, 2014, 8(2): 257-270.
doi: 10.1038/ismej.2013.151 |
63 |
DESIRO A, FACCIO A, KAECH A, et al. Endogone,one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria[J].New Phytologist, 2015, 205(4): 1464-1472.
doi: 10.1111/nph.13136 |
64 |
TOOMER K H,CHEN X H,NAITO M,et al.Molecular evolution patterns reveal life history features of Mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi[J].Molecular Ecology,2015,24(13):3485-3500.
doi: 10.1111/mec.13250 |
65 |
NAITO M, DESIRO A, GONZALEZ J B, et al. ‘Candidatus Moeniiplasma glomeromycotorum’, an endobacterium of arbuscular mycorrhizal fungi[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1177-1184.
doi: 10.1099/ijsem.0.001785 |
66 |
DESIRO A, HAO Z, LIBER J A, et al. Mycoplasma-related endobacteria within Mortierellomycotina fungi: diversity, distribution and functional insights into their lifestyle[J]. The ISME Journal, 2018, 12(7): 1743-1757.
doi: 10.1038/s41396-018-0053-9 |
67 |
BERTAUX J, SCHMID M, PREVOST-BOURE N C, et al. In situ identification of intracellular bacteria related to Paenibacillus spp. In the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N[J]. Applied and Environmental Microbiology, 2003, 69(7): 4243-4248.
doi: 10.1128/AEM.69.7.4243-4248.2003 |
68 |
RUIZ-HERRERA J, LEON-RAMIREZ C, VERA-NUNEZ A, et al. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp.[J].New Phytologist, 2015, 207(3): 769-777.
doi: 10.1111/nph.13359 |
69 |
SHARMA M, SCHMID M, ROTHBALLER M, et al. Detection and identification of bacteria intimately associated with fungi of the order Sebacinales[J]. Cellular Microbiology, 2008, 10(11): 2235-2246.
doi: 10.1111/j.1462-5822.2008.01202.x |
70 |
GUO H J, GLAESER S P, ALABID I, et al. The abundance of endofungal bacterium Rhizobium radiobacter(syn. Agrobacterium tumefaciens) increases in its fungal host piriformospora indica during the tripartite sebacinalean symbiosis with higher plants[J]. Frontiers in Microbiology, 2017, 8: 629.
doi: 10.3389/fmicb.2017.00629 |
71 |
GLAESER S P, IMANI J, ALABID I, et al. Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica[J]. The ISME Journal, 2016, 10(4): 871-884.
doi: 10.1038/ismej.2015.163 |
72 |
ARENDT K R, HOCKETT K L, ARALDI-BRONDOLO S J, et al. Isolation of endohyphal bacteria from foliar ascomycota and in vitro establishment of their symbiotic associations[J]. Applied and Environmental Microbiology, 2016, 82(10): 2943-2949.
doi: 10.1128/AEM.00452-16 |
73 |
SOLTANI J, ZAHERI-SHOJA M, HAMZEI J, et al. Diversity and bioactivity of bacterial endophyte community of Cupressaceae[J]. Forest Pathology, 2016, 46(4): 353-361.
doi: 10.1111/efp.12270 |
74 |
FREY-KLETT P, BURLINSON P, DEVEAU A, et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists[J]. Microbiology and Molecular Biology Reviews, 2011, 75(4): 583-609.
doi: 10.1128/MMBR.00020-11 |
75 |
GREEN E R, MECSAS J. Bacterial secretion systems: an overview[J].Microbiology Spectrum, 2016, 4(1): 215-239.
doi: 10.1128/microbiolspec.VMBF-0012-2015 |
76 |
MOEBIUS N, UZUM Z, DIJKSTERHUIS J, et al. Active invasion of bacteria into living fungal cells[J]. eLife, 2014, 3: e03007.
doi: 10.7554/elife.03007 |
77 |
BARTNICKI-GARCIA S, NICKERSON W J. Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii[J]. Biochimica et Biophysica Acta, 1962, 58(1): 102-119.
doi: 10.1016/0006-3002(62)90822-3 |
78 |
BRIGHT M, BULGHERESI S. A complex journey: transmission of microbial symbionts[J]. Nature Reviews Microbiology, 2010, 8(3): 218-230.
doi: 10.1038/nrmicro2262 |
79 |
LASTOVETSKY O A, GASPAR M L, MONDO S J, et al. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15102-15107.
doi: 10.1073/pnas.1615148113 |
80 |
VORHOLT J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12): 828-840.
doi: 10.1038/nrmicro2910 |
81 |
PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799.
doi: 10.1038/nrmicro3109 |
82 | GRIFFIN E. A first look at communication theory[M]. New York,US: McGraw-Hill, 2006. |
83 |
HARDOIM P R, VAN OVERBEEK L S, BERG G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3): 293-320.
doi: 10.1128/MMBR.00050-14 |
84 |
MELA F, FRITSCHE K, DE BOER W, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger[J]. The ISME Journal, 2011, 5(9): 1494-1504.
doi: 10.1038/ismej.2011.29 |
85 |
GKARMIRI K, FINLAY R D, ALSTROM S, et al. Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica[J]. BMC Genomics, 2015, 16(1):1-17: 630.
doi: 10.1186/s12864-015-1758-z |
86 |
MORETTI M, GRUNAU A, MINERDI D, et al. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35[J]. Proteomics,2010,10(18): 3292-3320.
doi: 10.1002/pmic.200900716 |
87 |
BERG G, RYBAKOVA D, GRUBE M, et al. The plant microbiome explored: implications for experimentalbotany[J]. Journal of Experimental Botany, 2016, 67(4): 995-1002.
doi: 10.1093/jxb/erv466 |
88 |
HARDOIM P R, VAN OVERBEEK L S, VAN ELSAS J D. Properties of bacterial endophytes and their proposed role in plant growth[J]. Trends in Microbiology, 2008, 16(10): 463-471.
doi: 10.1016/j.tim.2008.07.008 |
89 |
DA SILVA R R, DORRESTEIN P C, QUINN R A. Illuminating the dark matter in metabolomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12549-12550.
doi: 10.1073/pnas.1516878112 |
90 |
STROBEL G, DAISY B. Bioprospecting for microbial endophytes and their natural products[J]. Microbiology and Molecular Biology Reviews, 2003, 67(4): 491-502.
doi: 10.1128/mmbr.67.4.491-502.2003 |
91 |
ALIVISATOS A P, BLASER M J, BRODIE E L, et al. A unified initiative to harness Earth′s microbiomes[J]. Science, 2015, 350(6260): 507-508.
doi: 10.1126/science.aac8480 |
92 |
FRANZOSA E A, HSU T, SIROTA-MADI A, et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling[J]. Nature Reviews Microbiology, 2015, 13(6): 360-372.
doi: 10.1038/nrmicro3451 |
93 |
BAI Y, MULLER D B, SRINIVAS G, et al. Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015, 528(7582): 364-369.
doi: 10.1038/nature16192 |
[1] | 李玲玉, 黄璐琦, 李政, 王晓, 刘伟, 张华敏, 马春霞. 基于传统分离和高通量测序的健康和患锈腐病西洋参根际土壤微生物群落分析[J]. 山东科学, 2023, 36(2): 41-49. |
[2] | 扈进冬, 李红梅, 吴远征, 魏艳丽, 李纪顺. 四种蔬菜土壤真菌群落组成与多样性[J]. 山东科学, 2023, 36(1): 58-65. |
[3] | 李红梅, 魏艳丽, 扈进冬, 杨凯, 刘宝军, 杨合同, 李纪顺. 臭氧水对土传病原真菌的杀灭作用[J]. 山东科学, 2021, 34(4): 67-72. |
[4] | 姚宗廷, 蒋淑华, 贾泽峰. 中国乳嘴衣属地衣分类学研究[J]. 山东科学, 2021, 34(1): 130-137. |
[5] | 扈进冬, 吴远征, 魏艳丽, 李红梅, 辛相启, 杨凯, 李纪顺. 木霉拌种剂对小麦根际土壤真菌群落多样性的影响[J]. 山东科学, 2019, 32(1): 46-51. |
[6] | 齐君,夏雪奎,贾爱荣,刘新,张绵松,刘昌衡. 二维高通量色谱分离制备海参来源真菌Epicoccum sp.的化学成分[J]. 山东科学, 2015, 28(4): 14-18. |
[7] | 李铭, 王海英, 赵遵田. 石耳目地衣内生菌的系统发育学分析[J]. J4, 2011, 24(2): 14-20. |
[8] | 邱振鲁, 王海英, 赵遵田. 地衣共生菌分离培养的新方法[J]. J4, 2011, 24(1): 33-35. |
|
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0