[1] |
王少华, 黄洪文, 曾和荣,等. 国际热核聚变堆实验增殖包层模块设计[J]. 强激光与粒子束, 2015, 27(1): 254-258.
doi: 10.11884/HPLPB201527.016011
|
[2] |
任秀龙, 方方, 宋海龙,等. 分布式光纤传感技术用于辐射监测的初步探讨[J]. 核电子学与探测技术, 2010, 30(11): 1533-1536.
doi: 10.3969/j.issn.0258-0934.2010.11.030
|
[3] |
周次明, 张方, 丁立,等. 辐射对光纤传感器性能影响的研究进展[J]. 激光与光电子学进展, 2011, 48(4): 040601.
doi: 10.3788/lop48.040601
|
[4] |
仲志成, 赵斌, 林君,等. 基于光纤传感技术的三维地应力传感器[J]. 光学精密工程, 2018, 26(2): 325-335.
doi: 10.3788/OPE.20182602.0325
|
[5] |
张发祥, 吕京生, 姜劭栋,等. 高灵敏抗冲击光纤光栅微振动传感器[J]. 红外与激光工程, 2016, 45(8): 0822002.
doi: 10.3788/IRLA201645.0822002
|
[6] |
ZHAO Y, LI X G, ZHOU X, et al. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 2016, 231: 324-340.
doi: 10.1016/j.snb.2016.03.026
|
[7] |
WOYESSA G, NIELSEN K, STEFANI A, et al. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor[J]. Optics Express, 2016, 24(2): 1206-1213.
doi: 10.1364/OE.24.001206
|
[8] |
梁居发, 敬世美, 孟爱华,等. 基于光纤布拉格光栅与长周期光栅并联的集成光学传感器[J]. 中国光学, 2016, 9(3): 329-334.
doi: 10.3788/CO.20160903.0329
|
[9] |
ANDRÉ R M, WARREN-SMITH S C, BECKER M, et al. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips[J]. Optics Express, 2016, 24(13): 14053-14065.
doi: 10.1364/OE.24.014053
|
[10] |
孙宝臣, 侯跃敏, 李峰,等. 光纤光栅与受激布里渊信号的耦合特性[J]. 中国光学, 2017, 10(4): 484-490.
doi: 10.3788/CO.20171004.0484
|
[11] |
LAI C C, LEE W Y, WANG W S. Gamma radiation effect on the fiber Fabry-Perot interference sensor[J]. IEEE Photonics technology letters, 2003, 15(8): 1132-1134.
doi: 10.1109/LPT.2003.815358
|
[12] |
龚华平, 杨效, 屠于梦,等. FBG传感器和电阻应变仪的振动监测特性[J]. 红外与激光工程, 2013,42(3): 810-813.
|
[13] |
张威, 梁勖, 陶汝华,等. 用于制作 FBG 的紧凑型准分子激光器的研究[J]. 红外与激光工程, 2016, 45(1): 0105001.
doi: 10.3788/IRLA201645.0105001
|
[14] |
薛渊泽, 王学锋, 罗明明,等. 再生光纤布拉格光栅的研究进展[J]. 激光与光电子学进展, 2018, 55(2):020007.
doi: 10.3788/lop55.020007
|
[15] |
吕京生,张发祥,赵强,等.高响应速度光纤光栅海洋温度传感器设计与仿真研究[J].山东科学, 2017, 30(1):59-63.
doi: 10.3976/j.issn.1002-4026.2017.01.009
|
[16] |
FUJITA K, KIMURA A, NAKAZAWA M, et al. Bragg peak shifts of fiber Bragg gratings in radiation environment[EB/OL]. [2018-05-01]. http://dx.doi.org/10.1117/12.417408
doi: 10.1117/12.417408
|
[17] |
刘扬,侯思祖.基于拉曼散射的分布式光纤测温系统的分析研究[J].电子设计工程,2009,17(1): 23-25.
doi: 10.3969/j.issn.1674-6236.2009.01.009
|
[18] |
FERNANDEZ A F, GUSAROV A, BERGHMANS F, et al. Long term irradiation of fibre Bragg gratings in a low dose rate gamma neutron radiation field [EB/OL]. [2018-05-01]. http://dx.doi.org/ 10.1117/12.452203
doi: 10.1117/12.452203
|
[19] |
FERNANDEZ A F, BRICHARD B, BERGHMANS F, et al. Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters[J]. IEEE Transactions on Nuclear Science, 2002, 49(6):2874-2878.
doi: 10.1109/TNS.2002.805985
|
[20] |
FERNANDEZ A F, BRICHARD B, BERGHMANS F, et al. Chemical composition fiber gratings in a high mixed gamma neutron radiation field[J]. IEEE Transactions on Nuclear Science, 2006, 53(3):1607-1613.
doi: 10.1109/TNS.2005.863273
|
[21] |
GUSAROV A , CHOJETZKI C,MCKENZIE I, et al. Effect of the fiber coating on the radiation sensitivity of Type I FBGs[J]. IEEE Photonics Technology Letters, 2008, 20(21):1802-1804.
doi: 10.1109/LPT.2008.2004699
|
[22] |
HENSCHEL H,GROBNIC D, HOEFFGEN S K, et al. Development of highly radiation resistant fiber Bragg gratings[J]. IEEE Transactions on Nuclear Science, 2011, 58(4):2103-2110.
doi: 10.1109/TNS.2011.2160204
|
[23] |
VOLOSHIN V V, VOROB’EV I L, IVANOV G A, et al. Radiation resistant optical fiber with a high birefringence[J]. Journal of Communications Technology and Electronics, 2009, 54(7): 847-851.
doi: 10.1134/S1064226909070146
|
[24] |
HENSCHEL H, HOEFFGEN S K., KUHNHENN J, et al. Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 2029-2034.
doi: 10.1109/TNS.2009.2039230
|
[25] |
马晶,车驰,于思源,等. 光纤布拉格光栅γ辐射损伤及其对光谱特性的影响[J]. 物理学报,2012,61(6): 064201.
doi: 10.7498/aps.61.064201
|
[26] |
刘铁根, 于哲, 江俊峰,等. 分立式与分布式光纤传感关键技术研究进展[J]. 物理学报, 2017, 66(7): 070705.
doi: 10.7498/aps.66.070705
|
[27] |
SANG A K, FROGGATT M E, GIFFORD D K, et al. One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh Scatter in optical fiber[J]. IEEE Sensors Journal, 2008, 8(7):1375-1380. DOI:
doi: 10.1109/JSEN.2008.927247
|
[28] |
PHÉRON X, GIRARD S, BOUKENTER A, et al. High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors[J]. Optics Express, 2012, 20(24):26978-26985.
doi: 10.1364/OE.20.026978
|
[29] |
JENSEN F B H, TAKADA E, NAKAZAWA M, et al. Consequences of radiation effects on pure-silica-core optical fibers used for Raman-scattering-based temperature measurements[J]. IEEE Transactions on Nuclear Science, 1998, 45(1): 50-58.
doi: 10.1109/23.659554
|
[30] |
KIMURA A, TAKADA E, FUJITA K, et al. Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques[J]. Measurement Science and Technology, 2001, 12(7): 966.
doi: 10.1088/0957-0233/12/7/338
|
[31] |
FERNANDEZ A F, RODEGHIERO P, BRICHARD B, et al. Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures[J].IEEE Transactions on Nuclear Science,2006,52(6):2689-2694.
doi: 10.1109/TNS.2005.860736
|
[32] |
Di FRANCESCA D, GIRARD S, PLANES I, et al. Radiation hardened architecture of a single-ended Raman-based distributed temperature sensor[J].IEEE Transactions on Nuclear Science, 2017, 64(1): 54-60.
doi: 10.1109/TNS.2016.2631539
|