山东科学 ›› 2015, Vol. 28 ›› Issue (2): 113-118.doi: 10.3976/j.issn.1002-4026.2015.02.019
• 其他研究论文 • 上一篇
姜峰
JIANG Feng
摘要: 本文提出了一种基于径向基函数神经网络(RBFNN)整定的PID控制策略,并将其应用于柔性倒立摆的跟踪控制。该方法通过神经网络辨识获取柔性摆的Jacobian信息,采用梯度下降法自适应调整PID的控制参数。仿真结果表明,与传统的PID控制效果相比,该控制方法响应速度快、超调量小,较好地解决了PID控制方法中参数整定困难的问题,实现了对柔性摆的有效跟踪控制。
中图分类号:
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0