山东科学 ›› 2015, Vol. 28 ›› Issue (2): 113-118.doi: 10.3976/j.issn.1002-4026.2015.02.019

• 其他研究论文 • 上一篇    

基于RBFNN整定的PID控制在柔性摆跟踪控制中的应用研究

姜峰   

  1. 泰州职业技术学院,江苏 泰州 225300
  • 收稿日期:2014-11-16 出版日期:2015-04-20 发布日期:2015-04-20
  • 作者简介:姜峰(1983-),男,讲师,硕士研究生,研究方向为智能控制及非线性系统控制。Email:187211787@qq.com
  • 基金资助:
    江苏省泰州职业技术学院院级科研课题(TZYKY-13-4)

RBFNN tuning based application of PID control in tracking control of flexible joint inverted pendulum

JIANG Feng   

  1. Taizhou Polytechnic College,Taizhou 225300, China
  • Received:2014-11-16 Online:2015-04-20 Published:2015-04-20

摘要: 本文提出了一种基于径向基函数神经网络(RBFNN)整定的PID控制策略,并将其应用于柔性倒立摆的跟踪控制。该方法通过神经网络辨识获取柔性摆的Jacobian信息,采用梯度下降法自适应调整PID的控制参数。仿真结果表明,与传统的PID控制效果相比,该控制方法响应速度快、超调量小,较好地解决了PID控制方法中参数整定困难的问题,实现了对柔性摆的有效跟踪控制。

关键词: 柔性倒立摆, 跟踪控制, 径向基函数神经网络

Abstract: We present a radial basis function neural network (RBFNN)tuning based PID control strategy.It is then applied to the tracking control of flexible joint inverted pendulum. It acquires Jacobian information of flexible joint inverted pendulum by the identification of neural network,and adaptively adjusts PID control parameters by gradient descent method.Simulation results show that the method has rapid response and small overshoot, as compared with other conventional PID control methods. It better solves the difficulty inparameters tuning of PID control method,and implements effective tracking and control over flexible joint inverted pendulum.

Key words: radial basis function neural network, tracking control, flexible joint inverted pendulum

中图分类号: 

  • TP183

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0