[1] |
XU Y, LIU T J, ZHANG Y, et al. Advances in technologies for pharmaceuticals and personal care products removal[J]. Journal of Materials Chemistry A, 2017, 5(24): 12001-12014. DOI:10.1039/C7TA03698A.
|
[2] |
BÜNING B, RECHTENBACH D, BEHRENDT J, et al. Removal of emerging micropollutants from wastewater by nanofiltration and biofilm reactor (MicroStop)[J]. Environmental Progress & Sustainable Energy, 2021, 40(3): e13587. DOI:10.1002/ep.13587.
|
[3] |
PRIYA A K, GNANASEKARAN L, RAJENDRAN S, et al. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment: A review[J]. Environmental Research, 2022, 204: 112298. DOI:10.1016/j.envres.2021.112298.
|
[4] |
CASTILLO-ZACARÍAS C, BAROCIO M E, HIDALGO-VÁZQUEZ E, et al. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection[J]. Science of the Total Environment, 2021, 757: 143722. DOI:10.1016/j.scitotenv.2020.143722.
|
[5] |
KUMAR M, SRIDHARAN S, SAWARKAR A D, et al. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review[J]. Science of the Total Environment, 2023, 859: 160031.DOI:10.1016/j.scitotenv.2022.160031.
|
[6] |
KUMAR M, CHEN H Y, SARSAIYA S, et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review[J]. Journal of Hazardous Materials, 2021, 409: 124967.DOI:10.1016/j.jhazmat.2020.124967.
|
[7] |
PAROLINI M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review[J]. Science of the Total Environment, 2020, 740: 140043. DOI:10.1016/j.scitotenv.2020.140043.
|
[8] |
ARCILA-SAENZ J, HINCAPIÉ-MEJÍA G, LONDOÑO-CAÑAS Y A, et al. Role of the hydrolytic-acidogenic phase on the removal of bisphenol A and sildenafil during anaerobic treatment[J]. Environmental Monitoring and Assessment, 2023, 195(12): 1552. DOI:10.1007/s10661-023-12009-8.
|
[9] |
DODGEN L K, LI J, WU X, et al. Transformation and removal pathways of four common PPCP/EDCs in soil[J]. Environmental Pollution, 2014, 193: 29-36. DOI:10.1016/j.envpol.2014.06.002.
pmid: 24997388
|
[10] |
HERNANDEZ-RUIZ S, ABRELL L, WICKRAMASEKARA S, et al. Quantifying PPCP interaction with dissolved organic matter in aqueous solution: Combined use of fluorescence quenching and tandem mass spectrometry[J]. Water Research, 2012, 46(4): 943-954. DOI:10.1016/j.watres.2011.11.061.
|
[11] |
LIAO C Y, LIU F, ALOMIRAH H, et al. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures[J]. Environmental Science & Technology, 2012, 46(12): 6860-6866. DOI:10.1021/es301334j.
|
[12] |
ZHU R, ZHAO W H, ZHAI M J, et al. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples[J]. Analytica Chimica Acta, 2010, 658(2): 209-216. DOI:10.1016/j.aca.2009.11.008.
pmid: 20103097
|
[13] |
赵斌, 谭学蓉, 薛鸣, 等. 广元市河流中双酚类物质的污染状况及分布特征[J]. 环境监控与预警, 2023, 15(6): 17-23. DOI:10.3969/j.issn.1674-6732.2023.06.003.
|
[14] |
梅雨贤, 刘悦弘, 李楠, 等. 珠江广州河段、河涌及管道径流中双酚类化合物的污染特征与生态风险[J]. 华南师范大学学报(自然科学版), 2024, 56(3): 15-24. DOI:10.6054/j.jscnun.2024033.
|
[15] |
许东海, 谭学蓉, 赵斌, 等. 2020—2021年广元市主城区水源水和饮用水中双酚类化合物检测分析[J]. 预防医学情报杂志, 2023, 39(2): 219-227.
|
[16] |
庄睿, 胡婧, 朱颖, 等. 市售鱼类中双酚A、双酚S污染水平及风险评估[J]. 食品安全导刊, 2024(24): 58-62.
|
[17] |
谭学蓉, 许东海, 龙洋, 等. 四川省市售食品中双酚A和双酚S检测结果分析[J]. 预防医学情报杂志, 2018, 34(12): 1507-1512.
|
[18] |
孟伟, 曹艳秋, 王开清, 等. 塑料包装食品及饮品检测中双酚类标准物质的应用[J]. 食品安全质量检测学报, 2022, 13(6): 1791-1800. DOI:10.19812/j.cnki.jfsq11-5956/ts.2022.06.020.
|
[19] |
TIŠLER T, KREL A, GERŽELJ U, et al. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms[J]. Environmental Pollution, 2016, 212: 472-479. DOI:10.1016/j.envpol.2016.02.045.
pmid: 26957022
|
[20] |
SPERANZA A, CROSTI P, MALERBA M, et al. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen[J]. Plant Biology, 2011, 13(1): 209-217. DOI:10.1111/j.1438-8677.2010.00330.x.
pmid: 21143743
|
[21] |
ADAMAKIS I S, PANTERIS E, CHERIANIDOU A, et al. Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013, 750(1/2): 111-120. DOI:10.1016/j.mrgentox.2012.10.012.
|
[22] |
OUYANG W M, LUO W J, ZHANG D Y, et al. PI-3K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation[J]. Environmental Health Perspectives, 2008, 116(1): 1-6. DOI:10.1289/ehp.10403.
pmid: 18197291
|
[23] |
RANJAN N, SINGH P K, MAURYA N S. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions[J]. Ecotoxicology and Environmental Safety, 2022, 247: 114220. DOI:10.1016/j.ecoenv.2022.114220.
|
[24] |
HUYNH N C, NGUYEN T T T, NGUYEN D T C, et al. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review[J]. Science of the Total Environment, 2023, 898: 165317. DOI:10.1016/j.scitotenv.2023.165317.
|
[25] |
RASTOGI A, TIWARI M K, GHANGREKAR M M. A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)[J]. Journal of Environmental Management, 2021, 300: 113694. DOI:10.1016/j.jenvman.2021.113694.
|
[26] |
李富娟, 高礼, 李凌云, 等. 宁夏第三排水沟中药物和个人护理品(PPCPs)的污染特征与生态风险评估[J]. 环境科学, 2022, 43(8): 4087-4096. DOI:10.13227/j.hjkx.202112080.
|
[27] |
陈贤, 张彩杰, 杨桂朋, 等. 典型药物及个人护理品在黄东海海域水体中的检测、分布规律及其风险评估[J]. 环境科学, 2020, 41(1): 194-204. DOI:10.13227/j.hjkx.201907028.
|
[28] |
闵熙泽, 张子峰, 滕雨芊, 等. 北极地区水环境中PPCPs的污染现状研究进展[J]. 哈尔滨工业大学学报, 2023, 55(6): 19-32. DOI:10.11918/202209076.
|
[29] |
SUN M X, FENG J J, FENG Y, et al. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116829. DOI:10.1016/j.trac.2022.116829.
|
[30] |
CHEN F F, GONG Z Y, KELLY B C. Rapid analysis of pharmaceuticals and personal care products in fish plasma micro-aliquots using liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1383: 104-111. DOI:10.1016/j.chroma.2015.01.033.
pmid: 25640994
|
[31] |
TU X J, DU C P, HE Y C, et al. Determination of bisphenols in beeswax based on sugaring out-assisted liquid-liquid extraction: Method development and application in survey,recycling and degradation studies[J]. Chemosphere, 2024, 351: 141274. DOI:10.1016/j.chemosphere.2024.141274.
|
[32] |
CEPEDA D S I, CASTAÑEDA H M P, MAYOR A V R, et al. Synthetic peptide purification via solid-phase extraction with gradient elution: A simple, economical, fast, and efficient methodology[J]. Molecules, 2019, 24(7): 1215. DOI:10.3390/molecules24071215.
|
[33] |
PŁOTKA-WASYLKA J, SZCZEPAŃSKA N, DE LA GUARDIA M, et al. Miniaturized solid-phase extraction techniques[J]. TrAC Trends in Analytical Chemistry, 2015, 73: 19-38. DOI:10.1016/j.trac.2015.04.026.
|
[34] |
MA J Y, JIANG H L, KANG F S, et al. High-Performance enrichment and sensitive analysis of bisphenol and its analogues in water and milk using a novel Ni-Based cationic Metal-Organic framework[J]. Food Chemistry, 2024, 441: 138267. DOI:10.1016/j.foodchem.2023.138267.
|
[35] |
JIAN N G, QIAN L L, WANG C M, et al. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water[J]. Journal of Hazardous Materials, 2019, 363: 81-89. DOI:10.1016/j.jhazmat.2018.09.052.
pmid: 30308368
|
[36] |
LIANG M, HOU X C, XIAN Y P, et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples[J]. Food Chemistry, 2022, 376: 131948. DOI:10.1016/j.foodchem.2021.131948.
|
[37] |
QIN H L, LIU H, LIU Y K, et al. Recent advances in sample preparation and chromatographic analysis of pharmaceuticals and personal care products in environment[J]. TrAC Trends in Analytical Chemistry, 2023, 164: 117112. DOI:10.1016/j.trac.2023.117112.
|
[38] |
LIU J, LIU Q, WEI L L, et al. A novel polyhedral oligomeric silsesquioxane-based hybrid monolith as a sorbent for on-line in-tube solid phase microextraction of bisphenols in milk prior to high performance liquid chromatography-ultraviolet detection analysis[J]. Food Chemistry, 2022, 374: 131775. DOI:10.1016/j.foodchem.2021.131775.
|
[39] |
BAGHERI N, AL LAWATI H A J, AL SHARJI N A, et al. Magnetic zinc based 2D-metal organic framework as an efficient adsorbent for simultaneous determination of fluoroquinolones using 3D printed microchip and liquid chromatography tandem mass spectrometry[J]. Talanta, 2021, 224: 121796. DOI:10.1016/j.talanta.2020.121796.
|
[40] |
HUANG Y F, LI Y Y, WU Y F, et al. Computer-aided design-based green fabrication of magnetic molecularly imprinted nanoparticles for specific extraction of non-steroidal anti-inflammatory drugs[J]. Chemical Engineering Journal, 2023, 452: 139440. DOI:10.1016/j.cej.2022.139440.
|
[41] |
LI S H, FENG S W, VAN SCHEPDAEL A, et al. Hollow fiber membrane-protected amino/hydroxyl bifunctional microporous organic network fiber for solid-phase microextraction of bisphenols A, F, S, and triclosan in breast milk and infant formula[J]. Food Chemistry, 2022, 390: 133217. DOI:10.1016/j.foodchem.2022.133217.
|
[42] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. DOI:10.1038/354056a0.
|
[43] |
VALCÁRCEL M, SIMONET B M, CÁRDENAS S, et al. Present and future applications of carbon nanotubes to analytical science[J]. Analytical and Bioanalytical Chemistry, 2005, 382(8): 1783-1790. DOI:10.1007/s00216-005-3373-3.
pmid: 16007437
|
[44] |
NI R, WANG Y Z, WEI X X, et al. Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin[J]. Talanta, 2020, 206: 120215. DOI:10.1016/j.talanta.2019.120215.
|
[45] |
SOBHI H R, MOHAMMADZADEH F, BEHBAHANI M, et al. Application of a modified MWCNT-based d-μSPE procedure for determination of bisphenols in soft drinks[J]. Food Chemistry, 2022, 385: 132644. DOI:10.1016/j.foodchem.2022.132644.
|
[46] |
XUE S, MA X F, WANG Y F, et al. Advanced development of three-dimensional covalent organic frameworks: Valency design, functionalization, and applications[J]. Coordination Chemistry Reviews, 2024, 504: 215659. DOI:10.1016/j.ccr.2024.215659.
|
[47] |
CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. DOI:10.1126/science.1120411.
pmid: 16293756
|
[48] |
WANG R, CHEN Z L. A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons,andits hyphenation to HPLC for quantitation[J]. Microchimica Acta, 2017, 184(10): 3867-3874. DOI:10.1007/s00604-017-2408-8.
|
[49] |
CHEN L X, WU Q, GAO J, et al. Applications of covalent organic frameworks in analytical chemistry[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 182-193. DOI:10.1016/j.trac.2019.01.016.
|
[50] |
LIN Z L, JIN Y H, CHEN Y X, et al. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights[J]. Journal of Colloid and Interface Science, 2023, 645: 943-955. DOI:10.1016/j.jcis.2023.05.026.
pmid: 37182326
|
[51] |
LEE J M, COOPER A I. Advances in conjugated microporous polymers[J]. Chemical Reviews, 2020, 120(4): 2171-2214.DOI:10.1021/acs.chemrev.9b00399.
|
[52] |
MA J Q, LIU L, WANG X, et al. Development of dispersive solid-phase extraction with polyphenylene conjugated microporous polymers for sensitive determination of phenoxycarboxylic acids in environmental water samples[J]. Journal of Hazardous Materials, 2019, 371: 433-439. DOI:10.1016/j.jhazmat.2019.03.033.
|
[53] |
WAN N N, CHANG Q Y, HOU F Y, et al. Nanoarchitectured conjugated microporous polymers: State of the art synthetic strategies and opportunities for adsorption science[J]. Chemistry of Materials, 2022, 34(17): 7598-7619. DOI:10.1021/acs.chemmater.2c00999.
|
[54] |
SUN M, FENG J Q, FENG Y, et al. Core-shellsilica@pyridyl conjugated microporous polymer as a stationary phase for high performance liquid chromatography[J]. Analytica Chimica Acta, 2024, 1292: 342258. DOI:10.1016/j.aca.2024.342258.
|
[55] |
WU Y Z, XIONG J H, WEI S J, et al. Molecularly imprinted polymers by reflux precipitation polymerization for selective solid-phase extraction of quinolone antibiotics from urine[J]. Journal of Chromatography A, 2024, 1714: 464550. DOI:10.1016/j.chroma.2023.464550.
|
[56] |
GODAYOL A, BESALÚ E, ANTICÓ E, et al. Monitoring of sixteen fragrance allergens and two polycyclicmusks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography[J]. Chemosphere, 2015, 119: 363-370. DOI:10.1016/j.chemosphere.2014.06.072.
|
[57] |
WEI F, ZHANG F F, LIAO H, et al. Preparation of novel polydimethylsiloxane solid-phase microextraction film and its application in liquid sample pretreatment[J]. Journal of Separation Science, 2011, 34(3): 331-339. DOI:10.1002/jssc.201000603.
pmid: 21268257
|
[58] |
LI J H, DONG R C, WANG X Y, et al. One-pot synthesis of magnetic molecularly imprinted microspheres by RAFT precipitation polymerization for the fast and selective removal of 17β-estradiol[J]. RSC Advances, 2015, 5(14): 10611-10618. DOI:10.1039/C4RA11177J.
|