山东科学 ›› 2025, Vol. 38 ›› Issue (1): 83-95.doi: 10.3976/j.issn.1002-4026.20240036

• 能源与动力 • 上一篇    下一篇

远临界点垂直管内超临界CO2换热特性的数值模拟研究

赵崇鑫1(), 崔建波2, 金延超2, 韩亚洲2, 吴龚鹏1,2, 何燕1,*(), 魏振文2,*()   

  1. 1.青岛科技大学 机电工程学院,山东 青岛 266000
    2.青岛德固特节能装备股份有限公司,山东 青岛 266000
  • 收稿日期:2024-03-11 出版日期:2025-02-20 发布日期:2025-01-21
  • 通信作者: 何燕(1973—),女,教授,博士,泰山学者,博士生导师,研究方向为纳米材料。E-mail:heyanqustid@163.com; 魏振文(1965—),男,高级工程师,研究方向为高温换热。E-mail:z3692581471214@163.com
  • 作者简介:赵崇鑫(1997—),男,硕士,研究方向为超临界换热。E-mail:2567210408@qq.com
  • 基金资助:
    青岛博士后应用研究项目(QDBSH20220201001)

Numerical study on heat transfer characteristics of supercritical CO2 in vertical tubes at far-critical points

ZHAO Chongxin1(), CUI Jianbo2, JIN Yanchao2, HAN Yazhou2, WU Gongpeng1,2, HE Yan1,*(), WEI Zhenwen2,*()   

  1. 1. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
    2. Qingdao Doright Energy Saving Equipment Company Limited,Qingdao 266000, China
  • Received:2024-03-11 Online:2025-02-20 Published:2025-01-21

摘要:

超临界CO2在核能发电、太阳能发电、低温制冷、航空航天等领域有着重要应用。目前对超临界CO2管内对流换热的研究大多在临界点温区附近,而在远离临界点高温高压条件下的超临界CO2换热规律尚不明晰。在高温高压下进行了数值模拟研究,探究了质量流量、入口温度、系统压力、热流密度和管径对对流换热系数的影响,并分析了由这些工况变化引起的浮升力和流动加速效应对换热特性的影响。 结果表明: 随着质量流量、入口温度、系统压力和热流密度的增加,对流换热系数增大;在不同热流密度条件下,流体的对流换热系数差值沿流动方向逐渐扩大;对流换热系数随着管径增大而减小。相较于临界点附近的换热规律,热流密度和管径对对流换热系数的影响存在差异。总体而言,压力对对流换热系数的影响相对较小。该研究对理解和完善超临界流体换热规律、指导高效安全换热器设计具有重要意义和工程价值。

关键词: 超临界CO2, 远临界点, 垂直管, 换热特性, 数值模拟

Abstract:

Supercritical CO2 plays an important role in many applications such as nuclear power generation, solar power generation, cryogenic refrigeration, and aerospace. Currently, the majority of studies on supercritical CO2 convective heat transfer in tubes focus on the temperature range near the critical point, while the heat transfer patterns at high temperature and pressure far from the critical point remain unclear and need to be further studied. In this study, numerical simulations were performed to analyze the effects of mass flow, inlet temperature, system pressure, heat flux density, and tube diameter on the convective heat transfer coefficient at high temperature and pressure, as well as the effects of buoyancy and flow acceleration caused by operating conditions on the heat transfer characteristics. The results show that the convective heat transfer coefficient increases with increasing mass flow, inlet temperature, system pressure, and heat flux density. The difference in convective heat transfer coefficient gradually grows along the flow direction under different heat flux densities. Convective heat transfer coefficient decreases with increasing tube diameter. Compared with the heat transfer patterns near the critical point, heat flux density and tube diameter exert different effects on the convective heat transfer coefficient. In general, the effects of pressure on the convective heat transfer coefficient are small. This study provides significant values to understand the law of supercritical fluid heat transfer and guide the design of efficient and safe heat exchanger.

Key words: supercritical CO2, far critical point, vertical tube, heat transfer characteristics, numerical simulation

中图分类号: 

  • TK-9

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0