山东科学 ›› 2019, Vol. 32 ›› Issue (5): 46-53.doi: 10.3976/j.issn.1002-4026.2019.05.005
刘可春,高燕,张云,何秋霞,韩利文,李宁,季秀娜,孙晨*
收稿日期:
2019-06-26
出版日期:
2019-10-20
发布日期:
2019-10-08
通信作者:
孙晨(1985—),女,博士,助理研究员,研究方向为基于斑马鱼模型的药物筛选。Tel:15863140572,E-mail:mornings0123@163.com
作者简介:
刘可春(1964—),男,博士,研究员,研究方向为药物筛选。E-mail: hliukch@sdas.org
基金资助:
LIU Ke-chun, GAO Yan, ZHANG Yun, HE Qiu-xia, HAN Li-wen, LI Ning, JI Xiu-na, SUN Chen*
Received:
2019-06-26
Online:
2019-10-20
Published:
2019-10-08
摘要: 耳聋疾病严重影响着患者的生存质量。选择合适的模式生物,对耳聋疾病进行研究,可为该疾病的治疗和药物研发等提供可靠数据。斑马鱼是近年来兴起研究的一种新型脊椎动物模式生物,具有独特的自身优势,其在听觉领域的应用正日益受到人们的关注。基于此,就斑马鱼在听觉领域的研究优势、应用进展以及常用的技术方法等进行了综述。
中图分类号:
刘可春, 高燕, 张云, 何秋霞, 韩利文, 李宁, 季秀娜, 孙晨. 模式生物斑马鱼在听觉领域的应用[J]. 山东科学, 2019, 32(5): 46-53.
LIU Ke-chun, GAO Yan, ZHANG Yun, HE Qiu-xia, HAN Li-wen, LI Ning, JI Xiu-na, SUN Chen. Zebrafish as a model organism for hearing research[J]. Shandong Science, 2019, 32(5): 46-53.
1 | 杨君, 张镜心, 郑晓婉, 等. 中国人最常见的耳聋基因GJB2,12SrRNA,SLC26A4和对新生儿耳聋基因筛查的需求[J/OL]. 临床检验杂志(电子版), 2012,1(1):8-9. [2019-06-20]. http://www.cnki.com.cn/Article/CJFDTotal-LNJI201201006.htm. |
2 |
RASOOLY R S, HENKEN D, FREEMAN N, et al. Genetic and genomic tools for zebrafish research: The NIH zebrafish initiative[J]. Developmental Dynamics, 2003, 228(3):490-496.
doi: 10.1002/dvdy.10366 |
3 | 程磊. 斑马鱼胚胎图像的形态学特征分析[D]. 南京:南京理工大学, 2009. |
4 |
KERSTIN H, MATTHEW D C, CARLOS F T, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503.
doi: 10.1038/nature12111 |
5 |
NICOLSON T. The genetics of hearing and balance in zebrafish[J]. Annual Review of Genetics, 2005, 39(1):9-22.
doi: 10.1146/annurev.genet.39.073003 |
6 |
BEVER M M, FEKETE D M. Atlas of the developing inner ear in zebrafish[J]. Developmental dynamics, 2002, 223(4):536-543.
doi: 10.1002/dvdy.10062 |
7 |
SANTI P A, JOHNSON S B, HILLENBRAND M, et al. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues[J]. Biotechniques, 2009, 46(4):287-294.
doi: 10.2144/000113087 |
8 | PERRY S F, EKKER M, FARRELL A P, et al. Fish physiology zebrafish[M]. Pittsburgh:Academic Press,2010. |
9 |
PLATT C. Zebrafish inner ear sensory surfaces are similar to those in goldfish[J]. Hearing Research, 1993, 65(1/2):133-140.
doi: 10.1016/0378-5955(93)90208-I |
10 |
ENGELMANN J, HANKE W, MOGDANS J, et al. Hydrodynamic stimuli and the fish lateral line[J]. Nature, 2000, 408(6808):51-52.
doi: 10.1038/35040706 |
11 |
GHYSEN A, DAMBLY-CHAUDIERE C. Development of the zebrafish lateral line[J]. Current Opinion in Neurobiology, 2004, 14(1):67-73.
doi: 10.1016/j.conb.2004.01.012 |
12 |
NAYAK G D, RATNAYAKA H S, GOODYEAR R J, et al. Development of the hair bundle and mechanotransduction[J]. International Journal of Developmental Biology, 2007, 51(6/7):597.
doi: 10.1387/ijdb.072392gn |
13 |
TON C, PARNG C. The use of zebrafish for assessing ototoxic and otoprotective agents[J]. Hearing Research, 2005, 208(1/2):79-88.
doi: 10.1016/j.heares.2005.05.005 |
14 |
赵壮, 佟军威, 张靖溥, 等. 氨基糖苷类药物耳毒性的斑马鱼模型的研究[J]. 药学学报, 2011,46(8):928-935.
doi: 10.16438/j.0513-4870.2011.08.009 |
15 |
YOO M H, RAH Y C, CHOI J, et al. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos[J]. International Journal of Pediatric Otorhinolaryngology, 2016, 83:168-174.
doi: 10.1016/j.ijporl.2016.02.013 |
16 |
YOO M H, RAH Y C, PARK S, et al. Impact of nicotine exposure on hair cell toxicity and embryotoxicity during zebrafish development[J]. Clinical and Experimental Otorhinolaryngology, 2018, 11(2):109-117.
doi: 10.21053/ceo.2017.00857 |
17 |
OU H C, CUNNINGHAM L L, FRANCIS S P, et al. Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle[J]. Journal of the Association for Research in Otolaryngology, 2009, 10(2):191-203.
doi: 10.1007/s10162-009-0158-y |
18 |
VLASITS A L, SIMON J A, RAIBLE D W, et al. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin[J]. Hearing Research, 2012, 294(1/2):153-165.
doi: 10.1016/j.heares.2012.08.002 |
19 |
SONG J J, CHANG J, CHOI J, et al. Protective role of NecroX-5 against neomycin-induced hair cell damage in zebrafish[J]. Archives of Toxicology, 2014, 88(2):435-441.
doi: 10.1007/s00204-013-1124-3 |
20 |
WU C Y, LEE H J, LIU C F, et al. Protective role of L-ascorbic acid, N-acetylcysteine and apocynin on neomycin-induced hair cell loss in Zebrafish[J]. Journal of Applied Toxicology, 2015, 35(3):273-279.
doi: 10.1002/jat.3043 |
21 |
OH K H, RAH Y C, HWANG K H, et al. Melatonin mitigates neomycin-induced hair cell injury in zebrafish[J]. Drug and Chemical Toxicology, 2016, 40(4):1-7.
doi: 10.1080/01480545.2016.1244679 |
22 |
HIROSE Y, SUGAHARA K, KANAGAWA E, et al. Quercetin protects against hair cell loss in the zebrafish lateral line and guinea pig cochlea[J]. Hearing Research, 2016, 342:80-85.
doi: 10.1016/j.heares.2016.10.001 |
23 |
ESTERBERG R, LINBO T, PICKETT S B, et al. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death[J]. The Journal of Clinical Investigation, 2016, 126(9):3556-3566.
doi: 10.1172/JCI84939 |
24 |
吴艾欣, 李娟, 陈钢, 等. 丹参提取物及丹酚酸B对庆大霉素耳毒性保护作用的体内外研究[J]. 广东药科大学学报, 2019, 35(1):76-81.
doi: 10.16809/j.cnki.2096-3653.2018120403 |
25 |
HARRIS J A, CHENG A G, CUNNINGHAM L L, et al. Neomycin-induced hair cell death and rapid regeneration in the lateral of zebrafish(Danio rerio)[J].Journal of the Association for Research in Otolaryngology, 2003, 4(2):219-234.
doi: 10.1007/s10162-002-3022-x |
26 |
HERNANDEZ P P, OLIVARI F A, SARRAZIN A F, et al. Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal[J]. Developmental Neurobiology, 2007, 67(5):637-654.
doi: 10.1002/dneu.20386 |
27 |
MILLIMAKI B B, SWEET E M, DHASON M S, et al. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch[J]. Development, 2007, 134(2):295-305.
doi: 10.1242/dev.02734 |
28 |
MA E Y, RUBEL E W, RAIBLE D W. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line[J]. Journal of Neuroscience, 2008, 28(9):2261-2273.
doi: 10.1523/JNEUROSCI.4372-07.2008 |
29 |
MILLIMAKI B B, SWEET E M, RILEY B B. Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear[J]. Developmental Biology, 2010, 338(2):262-269.
doi: 10.1016/j.ydbio.2009.12.011 |
30 |
SCHUCK J B, SUN H, PENBERTHY W T, et al. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma[J]. BMC Neuroscience, 2011, 12(1):88.
doi: 10.1186/1471-2202-12-88 |
31 |
MACKENZIE S M, RAIBLE D W. Proliferative regeneration of zebrafish lateral line hair cells after different ototoxic insults[J]. PLoS ONE, 2012, 7(10):e47257.
doi: 10.1371/journal.pone.0047257 |
32 | 周婷婷, 范纯新, 邹莎, 等. Eya1-Six1信号在斑马鱼侧线神经丘毛细胞再生过程中的表达[J]. 上海海洋大学学报, 2013, 22(6):801-806. |
33 | JIANG L, ROMERO-CARVAJAL A, HAUG J S, et al. Gene- analysis of hair cell regeneration in the zebrafish lateral line[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): E1383-E1392. DOI: 10.1073/pnas.1402898111 |
34 |
LEE S G, HUANG M, OBHOLZER N D, et al. Myc and Fgf are required for zebrafish neuromast hair cell regeneration[J]. PloS one, 2016, 11(6):e0157768.
doi: 10.1371/journal.pone.0157768 |
35 |
TANG D, HE Y, LI W, et al. Wnt/β-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast[J]. Experimentai & Molecular Medicine, 2019, 51(5):58.
doi: 10.1038/s12276-019-0247-x |
36 |
CHIU L L, CUNNINGHAM L L, RAIBLEe D W, et al. Using the zebrafish lateral line to screen for ototoxicity[J]. Journal of the Association for Research in Otolaryngology, 2008, 9(2):178-190.
doi: 10.1007/s10162-008-0118-y |
37 |
TANIMOTO M, OTA Y, HORIKAWA K, et al. Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish.[J]. Neuroscience Research, 2009, 65(9):S69-S69.
doi: 10.1523/JNEUROSCI.5530-08.2009 |
38 |
GLEASON M R, NAGIEL A, JAMET S, et al. The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish[J]. Proceedings of the National Academy of Sciences, 2009, 106(50):21347-21352.
doi: 10.1073/pnas.0911632106 |
39 |
THOMAS A J, HAILEY D W, STAWICKI T M, et al. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line[J]. Journal of Neuroscience, 2013, 33(10):4405-4414.
doi: 10.1523/JNEUROSCI.3940-12.2013 |
40 |
MAEDA R, PACENTINE I V, ERICKSON T, et al. Functional analysis of the transmembrane and cytoplasmic domains of Pcdh15a in zebrafish hair cells[J]. The Journal of Neuroscience, 2017, 37(12):3231-3245.
doi: 10.1523/JNEUROSCI.2216-16.2017 |
41 |
ZEDDIES D G, FAY R R. Development of the acoustically evoked behavioral response in zebrafish to pure tones[J]. The Journal of Experimental Biology, 2005, 208(7):1363-1372.
doi: 10.1242/jeb.01534 |
42 |
SULI A, WATSON G M, RUBEL E W, et al. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells[J]. PloS One, 2012, 7(2):e29727-e29732.
doi: 10.1371/journal.pone.0029727 |
43 |
CERVI A L, POLING K R, HIGGS D M. Behavioral measure of frequency detection and discrimination in the zebrafish, Danio rerio[J].Zebrafish, 2012, 9(1):1-7.
doi: 10.1089/zeb.2011.0720 |
44 |
NIIHORI M, PLATTO T, LGARASHI S, et al. Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: A high-throughput drug development platform targeting hearing loss[J]. Translational Research, 2015, 166(5):440-450.
doi: 10.1016/j.trsl.2015.05.002 |
45 |
YANG Q, SUN P, CHEN S, et al. Behavioral methods for the functional assessment of hair cells in zebrafish[J]. Frontiers of Medicine, 2017, 11(2):178-190.
doi: 10.1007/s11684-017-0507-x |
46 |
LIU X, LIN J, ZHANG Y, et al. Sound shock response in larval zebrafish: A convenient and high-throughput assessment of auditory function[J]. Neurotoxicology and Teratology, 2018, 66:1-7.
doi: 10.1016/j.ntt.2018.01.003 |
47 |
MAEDA R, PACENTINE I V, ERICKSON T, et al. Functional analysis of the transmembrane and cytoplasmic domains of Pcdh15a in zebrafish hair cells[J]. The Journal of Neuroscience, 2017, 37(12):3231-3245.
doi: 10.1523/JNEUROSCI.2216-16.2017 |
48 |
SCHWARZER S, SPIEB S, BRAND M, et al. Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development[J]. Biology Open, 2017, 6(9):1270-1278.
doi: 10.1242/bio.026211 |
49 |
PEI W, XU L, HUANG S C, et al. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues[J]. Npj Regenerative Medicine, 2018, 3(1):11-20.
doi: 10.1038/s41536-018-0050-7 |
50 |
ZHANG Q, ZHANG L, CHEN D, et al. Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function[J]. Nucleic Acids Research, 2018, 46(20):10930-10945.
doi: 10.1093/nar/gky758 |
51 | 冯晓, 齐麟, 孟娟. 斑马鱼耳聋基因Gfi与POU4f3的关联性[J]. 河南大学学报(医学版), 2014, 33(4):267-269. |
52 |
LI X, SONG G, ZHAO Y, et al. Claudin7b is required for the formation and function of inner ear in zebrafish[J]. Journal of Cellular Physiology, 2017, 233(4):3195-3206.
doi: 10.1002/jcp.26162 |
53 |
MATERN M S, BEIRL A, OGAWA Y, et al. Transcriptomic profiling of zebrafish hair cells using ribo tag[J]. Frontiers in Cell and Developmental Biology, 2018, 6:47-60.
doi: 10.3389/fcell.2018.00047 |
54 |
ITALLIA V P, TERESA N. Putative pore-forming subunits of the mechano-electrical transduction channel, Tmcl/2b, require Tmie to localize to the site of mechanotransduction in zebrafish sensory hair cells[J]. PloS Genetics, 2018, 15(2):e1007635.
doi: 10.1101/393330 |
[1] | 范伟, 沈川琳, 张轩铭, 杜兴硕, 展文, 孙晨, 靳梦, 李晓彬, 张思晨, 孙博通, 何秋霞. 基于网络药理学和分子对接技术预测西洋参抗衰老的作用机制[J]. 山东科学, 2024, 37(6): 42-50. |
[2] | 陈善军, 王欢, 胡凯庆, 毕文杰, 程贵东, 王松松, 韩利文, 王晓静. 基于斑马鱼模型和代谢组学技术筛选天麻中潜在抗癫痫活性成分[J]. 山东科学, 2024, 37(3): 1-9. |
[3] | 马诗经, 何春艳, 关天竹, 姚雪霜, 张俊鹏. 基于高脂血症斑马鱼模型和网络药理学探讨黄鳝肽抗高脂血症的作用机制[J]. 山东科学, 2024, 37(3): 27-38. |
[4] | 刘可春, 王勇澄, 臧晓涵, 夏青, 张云, 张姗姗, 孙晨. 网络药理学和斑马鱼模型在中药药效物质及作用机制研究中的应用进展[J]. 山东科学, 2024, 37(2): 29-35. |
[5] | 夏青, 臧晓涵, 王勇澄, 张云, 李培海, 张轩铭, 刘可春. 模式生物斑马鱼在化妆品功效评价中的应用进展及发展趋势分析[J]. 山东科学, 2024, 37(2): 36-46. |
[6] | 吴永昊, 谢和兵, 侯海荣, 王荣春, 陈锡强. 肺热普清散对低氧诱导斑马鱼运动损伤的保护作用及对Hif1α的影响[J]. 山东科学, 2024, 37(1): 32-38. |
[7] | 时瑞碟, 高鑫, 王宝堃, 高代丽, 靳梦, 张秀军. 基于斑马鱼模型研究木蝴蝶苷A的抗阿尔茨海默病活性和作用机制[J]. 山东科学, 2023, 36(6): 28-37. |
[8] | 韩利文, 陈善军, 董榕, 张友刚, 王晓静. 网络药理学在中药复杂作用模式研究中的应用进展[J]. 山东科学, 2021, 34(6): 22-31. |
[9] | 邹鸿远, 朱成悦, 张姗姗, 孔锐琦, 张云, 刘可春. 牡丹籽油微囊粉对异烟肼诱导的斑马鱼发育毒性的保护作用[J]. 山东科学, 2021, 34(4): 45-51. |
[10] | 莫彩莲, 李杰, 王加珍, 刘鑫, 林圣华, 牟艳玲, 张云, 刘可春, 何秋霞. 斑马鱼血栓模型在中药活性成分筛选中的适用性[J]. 山东科学, 2021, 34(4): 52-59. |
[11] | 王荣春,何秋霞,韩建,陈锡强,孙晨,王希敏,韩利文,刘可春. 氯霉素对斑马鱼幼鱼发育及免疫毒性的研究[J]. 山东科学, 2017, 30(6): 35-40. |
[12] | 刘发生,王荣春,郭敬兰,陈艳莉,夏青,孔浩天,冯润良,韩利文,张爱平,刘可春. 利用斑马鱼模型研究芦笋有效成分对免疫功能的调节作用[J]. 山东科学, 2017, 30(6): 29-34. |
[13] | 彭维兵, 周玲晓, 付先军,何秋霞, 王振国, 刘可春. 基于斑马鱼模型的昆海姜辛汤组分配伍的抗炎作用研究[J]. 山东科学, 2017, 30(2): 37-42. |
[14] | 孙晨,何秋霞,韩利文,陈锡强,王希敏,楚杰,韩建,王荣春,侯海荣,刘可春. 阿司匹林对斑马鱼胃肠道的毒性研究[J]. 山东科学, 2016, 29(6): 50-55. |
[15] | 侯海荣,张姗姗,孙晨,陈玉峰,何秋霞,李晓彬,于涛,彭德杰,韩利文,刘可春. 低聚果糖和低聚异麦芽糖促进斑马鱼肠道蠕动作用的研究[J]. 山东科学, 2016, 29(6): 56-61. |
|
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0