山东科学 ›› 2019, Vol. 32 ›› Issue (1): 102-112.doi: 10.3976/j.issn.1002-4026.2019.01.014

• 交通运输 • 上一篇    下一篇

基于乘客需求数据的定制商务班车站点选址方法

孙悦, 宋瑞*,邱果   

  1. 北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
  • 收稿日期:2018-08-11 出版日期:2019-02-20 发布日期:2019-01-25
  • 作者简介:孙悦(1994—),女,硕士研究生,研究方向为交通运输规划与管理。
  • 基金资助:
    国家重点研发计划(2018YFB1201402)

A site location method of customized business bus based on passenger demand data

SUN Yue, SONG Rui*, QIU Guo   

  1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University,Beijing 100044,China
  • Received:2018-08-11 Online:2019-02-20 Published:2019-01-25

摘要: 针对基础的聚类算法无法适应定制商务班车站点设置的问题,在传统的基于密度的带有噪声的空间聚类算法基础上,通过衡量类簇精细化服务指标确定分组效果,并对聚类效果不理想的组别依据其数据特征自动更新以扫描半径和最小包含点数为代表的聚类参数,进行迭代聚类,直到聚类效果达标为止。同时,结合节点重要度的思想改进基于密度的带有噪声的空间聚类算法,使其能够输出备选站点。研究结果表明,改进的算法能够较好地根据数据特征给出应有分组,给出的扫描半径和最小包含点参数能够较好地适应分组情况,备选节点能够有效地匹配周围的交通资源。

关键词: 聚类, DBSCAN算法, 定制商务班车, 节点重要度, 站点选址

Abstract: Based on the traditional algorithm of density-based spatial clustering of applications with noise (DBSCAN), this paper determined the grouping effect by measuring cluster refinement service index. For groups with unsatisfactory clustering effect, the clustering parameters represented by scanning radius and minimum points were updated automatically according to their data characteristics, and then iterative clustering was carried out until the clustering effect was up to standard. At the same time, the DBSCAN algorithm was combined with the idea of node importance, which enabled it to output alternative sites. The results show that the improved DBSCAN algorithm can give the proper grouping according to the data characteristics, and the scanning radius and the minimum points parameters can be better adapted to the grouping situation, and the alternative nodes can effectively match the traffic resources around them.

Key words: clustering, DBSCAN algorithm, customized business bus, node importance, site location

中图分类号: 

  • U116.2

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0