山东科学 ›› 2025, Vol. 38 ›› Issue (1): 64-73.doi: 10.3976/j.issn.1002-4026.20240041

• 能源与动力 • 上一篇    下一篇

氨燃气轮机回热循环热力学分析

申芷瑄1,2(), 梁世强1,2,*()   

  1. 1.中国科学院 工程热物理研究所,北京 100190
    2.中国科学院大学 工程科学学院,北京 100049
  • 收稿日期:2024-03-13 出版日期:2025-02-20 发布日期:2025-01-21
  • 通信作者: 梁世强,男,副研究员,研究方向为超临界二氧化碳动力循环。Tel:13693196177, E-mail: liangsq@iet.cn
  • 作者简介:申芷瑄(1998—),女,硕士研究生,研究方向为超临界二氧化碳动力循环。E-mail: shenzhixuan@iet.cn
  • 基金资助:
    高效低碳燃气轮机试验装置国家重大科技基础设施项目(2017-000052-73-01-001569)

Thermodynamic analysis of the regenerative cycle in an ammonia gas turbine

SHEN Zhixuan1,2(), LIANG Shiqiang1,2,*()   

  1. 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-03-13 Online:2025-02-20 Published:2025-01-21

摘要:

为应对能源需求缺口和人类对美好环境的追求,氨燃料以其零碳、能量密度大、生产运输成本低等因素,被认为是未来最具潜力的燃料之一,但纯氨燃烧仍有整体循环效率不高的问题。结合氨燃气轮机排出烟气的最高温度以及氨燃气轮机循环中最低温度液氨相变温度,匹配了再热式朗肯循环作为底循环,提出一种氨燃气轮机回热循环系统。利用热力学第一定律和热力学第二定律对系统热力学性能进行分析和评价,开展了氨燃气轮机进口温度和压力对整体循环性能影响的研究。 结果表明,在氨燃气轮机进口温度不超过1 400 ℃、进口压力低于0.5 MPa时,联合循环对氨燃气轮机循环的效率最高提升了33.38%;联合热力循环的最高效率为60.13%;联合循环有良好的热力学性质和能量回收率;在燃气轮机进口压力不超过0.5 MPa时,回热循环效率随氨燃气轮机进口温度升高和压力提升而提高。本研究为提升氨燃料的高效利用和氨燃气轮机循环实际使用提出了新的探索角度,为氨燃气轮机系统的能源利用做出前瞻性探讨。

关键词: 氨燃气轮机, 再热式朗肯循环, 回热循环, 联合循环, 热力学分析

Abstract:

In the pursuit of bridging the energy demand gap and striving for a pristine environment, ammonia fuel has emerged as one of the most promising fuels of the future. Zero carbon emissions, high energy density, and low production and transportation costs make it a promising candidate. However, challenges persist regarding the overall efficiency of pure ammonia combustion. This paper proposes a regenerative cycle in an ammonia gas turbine that matches the reheat Rankine cycle, considering the maximum temperature of the exhaust gas from the turbine and phase transition temperature of liquid ammonia in the turbine cycle. We conducted a thermodynamic analysis and evaluated the system performance based on the first and second laws of thermodynamics and analyzed the influence of the inlet temperature and pressure of the ammonia gas turbine on the overall cycle performance. The results indicate that the combined cycle has improved the efficiency of the ammonia gas turbine by up to 33.38% and the maximum efficiency achieved by the combined thermodynamic cycle is 60.13%,when the inlet temperature of an ammonia gas turbine does not exceed 1 400 ℃ and the inlet pressure remains below 0.5 MPa. Furthermore, the combined cycle exhibits outstanding thermodynamic properties and energy recovery rates. Additionally, the efficiency of the regenerative cycle increases with increasing the inlet temperature and pressure of the ammonia gas turbine, provided that the inlet pressure does not exceed 5 MPa. New perspectives have been proposed to enhance the operational efficiency of ammonia-powered gas turbines and promote the efficient utilization of ammonia as a fuel. This study proposes novel perspectives towards enhancing the efficient utilization of ammonia fuel and the actual efficiency of ammonia gas turbine cycles, providing a forward-looking exploration for the energy utilization of ammonia gas turbine systems.

Key words: ammonia gas turbine, reheat Rankine cycle, regenerative cycle, combined cycle, thermodynamic analysis

中图分类号: 

  • TK121

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0