山东科学 ›› 2024, Vol. 37 ›› Issue (6): 116-124.doi: 10.3976/j.issn.1002-4026.20240010

• 环境与生态 • 上一篇    下一篇

基于LSTM模型的污水处理厂出水总氮预测研究

余铭铨1(), 师浩铭2,*()   

  1. 1.中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122
    2.浙江大学 建筑工程学院,浙江 杭州 310058
  • 收稿日期:2024-01-16 出版日期:2024-12-20 发布日期:2024-12-05
  • 通信作者: *师浩铭,男,硕士研究生在读,研究方向为基于机器学习的污水脱氮研究。E-mail:22112063@zju.edu.cn, Tel:18013962592
  • 作者简介:余铭铨(1983—),男,硕士研究生,研究方向为环境工程设计与咨询、工程项目管理。E-mail:185700956@qq.com

Prediction of effluent total nitrogen in wastewater treatment using LSTM neural network

YU Mingquan1(), SHI Haoming2,*()   

  1. 1. Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
    2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
  • Received:2024-01-16 Online:2024-12-20 Published:2024-12-05

摘要:

出水总氮质量浓度是评价污水处理厂生物脱氮效果的关键指标之一。为解决污水厂总氮排放易超标的问题,提出了一个基于长短期记忆网络(LSTM)的出水总氮实时预测模型。利用皮尔逊相关性分析来确定模型输入,并通过网格搜索算法优化模型超参数。将得到的LSTM模型应用于重庆市某实际污水处理厂预测出水总氮,并与传统的时序模型作对比,验证了该模型的可行性。结果表明: LSTM模型能够较好地预测出水总氮,其预测值与实际值的平均绝对误差为0.911 mg/L,均方根误差为1.074 mg/L,平均绝对百分比误差为11.28%,各项指标均优于循环神经网络(RNN)模型和自回归差分移动平均(ARIMA)模型。这一模型的构建可以为出水总氮的高效监测提供帮助。

关键词: LSTM模型, 皮尔逊相关性, 网格搜索算法, 出水总氮

Abstract:

The effluent total nitrogen (TN) is one of the key indicators for assessing the biological denitrification performance of wastewater treatment plants(WWTPs). To mitigate the prevalent issue of excessive TN discharges from WTTPs, we proposed a real-time prediction model based on long short-term memory (LSTM) networks. We performed Pearson correlation analysis to determine model inputs and used grid search algorithm to optimize model hyperparameters. Then, we used the proposed model to predict the actual effluent TN in a WWTP in Chongqing and compared its predictive performance with that of traditional time-series models. Results indicate that the proposed model can effectively predict effluent TN with an average absolute error of 0.911 mg/L, an average root mean square error of 1.074 mg/L, and an average absolute percentage error of 11.28%. All of these performance indicators surpass those of the recurrent neural network and ARIMA models. The proposed model can serve as the foundation for effective monitoring of effluent TN.

Key words: long short-term memory model, Pearson correlation, grid search algorithm, effluent total nitrogen

中图分类号: 

  • TU992

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0