山东科学 ›› 2015, Vol. 28 ›› Issue (1): 64-70.doi: 10.3976/j.issn.1002-4026.2015.01.011

• 交通运输专栏 • 上一篇    下一篇

基于随机参数模型的非机动车骑行稳定性研究

陈丽烨,余荣杰   

  1. 1.上海市城市规划建筑设计工程有限公司,上海 200040;2.同济大学交通运输工程学院,上海 200092
  • 收稿日期:2014-12-20 出版日期:2015-02-20 发布日期:2015-02-20
  • 通信作者: 余荣杰(1989-),男,助理研究员,工学博士,研究方向为交通安全分析,主动式交通安全管理。 E-mail:yurongjie@tongji.edu.cn

Random parameter model based cyclist riding stability analysis

CHEN Liye,YU Rongjie   

  1. 1.Shanghai Urban Planning and Architectural Design Co.LTD., Shanghai 200040,China; 2.School of Traffic and Transportation Engineering, Tongji University, Shanghai 200092,China
  • Received:2014-12-20 Online:2015-02-20 Published:2015-02-20

摘要: 近年来我国非机动车的交通安全问题日益凸显。本研究基于非机动车骑行实验所采集的骑行行为数据、交通环境数据对非机动车的骑行稳定性进行研究。研究采用骑行转角变化率作为骑行稳定性的评价指标,基于所采集的骑行数据和骑行环境数据探索影响骑行稳定性的影响因素。采用基于贝叶斯推断的随机参数模型进行分析以考虑实验者之间的个体差异性。分析结果表明,非机动车骑行稳定性仅受骑行速度变异系数的影响;速度变异系数越大,转角变化率越大,骑行稳定性越差。通过与传统固定参数模型的拟合优度对比发现,考虑实验者个体差异的随机参数模型的拟合优度较好。

关键词: 非机动车安全, 随机参数模型, 骑行实验, 贝叶斯推断

Abstract: Cyclist safety has presently become an increasingly severe issue. We address cyclist riding stability with cycling data and traffic environment data collected in cyclist riding experiment. We also investigate the influential factors affecting riding stability based on cycling data and traffic environment data with corner changing rate as evaluation index for riding stability.We analyze data with Bayesian inference based random parameter model to consider the heterogeneity of individuals. Analytical results indicate that cyclist riding stability is only affected by riding speed variance coefficient.The greater the coefficient is, the greater corner changing rate is.This shows worse riding stability. Individual difference considered random parameter model has better degree of fitting, as compared with conventional fixed parameter models.

Key words: cyclist safety, riding experiment, Bayesian inference, random parameter model

中图分类号: 

  • U491.2+25

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0