J4 ›› 2012, Vol. 25 ›› Issue (3): 1-6.doi: 10.3976/j.issn.1002-4026.2012.03.001
• 目录 • 下一篇
徐雷1, 张小宁2
XU Lei1, ZHANG Xiao-Ning2
摘要:
车牌字符分割易受到车牌倾斜及边界、杂点的干扰,致使复杂条件下的车牌图像分割准确率不高,针对该缺点提出一种鲁棒性强的分割算法。在车牌预处理阶段进行图像明暗度分类及灰度图增强,以此为基础进行倾斜校正及上下边界定位;在字符切分阶段采用改进二分法进行分割,之后对1,2,6,7四个字符实现了边界精确定位。实验表明,该算法实时性较好,能够有效克服车牌对比度不高、模糊、粘连和倾斜的缺点。
中图分类号:
TP391.4
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0