|
[1] KNEIPP K, WANG Y, KNEIPP H, et al.
Single molecule detection using
surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 1997,
78(9): 1667-1670. DOI: 10.1103/PhysRevLett.78.1667.
[2] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra
of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974,
26(2): 163-166. DOI: 10.1016/0009-2614(74)85388-1.
[3] JEANMAIRE D L, VAN DUYNE R P. Surface Raman
spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines
adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical
Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20. DOI:
10.1016/S0022-0728(77)80224-6.
[4] SHARMA B, FRONTERA R R, HENRY A I, et al. SERS:
Materials, applications, and the future[J]. Materials Today, 2012, 15(1-2):
16-25. DOI: 10.1016/S1369-7021(12)70017-2.
[5] ALESSANDRI I, LOMBARDI J R. Enhanced Raman scattering
with dielectrics[J]. Chemical Reviews, 2016, 116(24): 14921-14981. DOI:
10.1021/acs.chemrev.6b00365.
[6] FANG Y, SEONG N H, DLOTT D D. Measurement of the
distribution of site enhancements in surface-enhanced Raman scattering[J].
Science, 2008, 321(5887): 388-392. DOI: 10.1126/science.1159499.
[7] SUN Y, XIA Y. Shape-controlled synthesis of gold and
silver nanoparticles[J]. Science, 2002, 298(5601): 2176-2179. DOI:
10.1126/science.1077229.
[8] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman
of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982,
86(17): 3391-3395. DOI: 10.1021/j100214a025.
[9] LING X, XIE L, FANG Y, et al. Can graphene be used as a
substrate for Raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561. DOI:
10.1021/nl903414x.
[10] LEE H K, LEE Y H, KOH C S L, et al. Designing
surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering:
emerging opportunities in analyte manipulations and hybrid materials[J].
Chemical Society Reviews, 2019, 48(3): 731-756. DOI: 10.1039/C7CS00786H.
[11] JENSEN L, AIKENS C M, SCHATZ G C. Electronic structure
methods for studying surface-enhanced Raman scattering[J]. Chemical Society
Reviews, 2008, 37(5): 1061-1073. DOI: 10.1039/B706023H.
[12] LOMBARDI J R, BIRKE R L. Theory of surface-enhanced
Raman scattering in semiconductors[J]. The Journal of Physical Chemistry C,
2014, 118(20): 11120-11130. DOI: 10.1021/jp503147u.
[13] LOMBARDI J R, BIRKE R L. A unified view of
surface-enhanced Raman scattering[J]. Accounts of Chemical Research, 2009,
42(6): 734-742. DOI: 10.1021/ar800249y.
[14] LI J F, HUANG Y F, DING Y, et al. Shell-isolated
nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
DOI: 10.1038/nature08907.
[15] TAO L, CHEN K, CHEN Z, et al. 1T′ transition metal
telluride atomic layers for plasmon-free SERS at femtomolar levels[J]. Journal
of the American Chemical Society, 2018, 140(28): 8696-8704. DOI:
10.1021/jacs.8b02999.
[16] ZHENG Z, CONG S, GONG W, et al. Semiconductor SERS
enhancement enabled by oxygen incorporation[J]. Nature Communications, 2017,
8(1): 1993. DOI: 10.1038/s41467-017-02166-z.
[17] SUN L, HU H, ZHAN D, et al. Plasma modified MoS2nanoflakes for surface enhanced Raman scattering[J]. Small, 2014, 10(6):
1090-1095. DOI: 10.1002/smll.201301840.
[18] YIN Y, MIAO P, ZHANG Y, et al. Significantly increased
Raman enhancement on MoX2(X=S,Se) monolayers upon phase
transition[J]. Advanced Functional Materials, 2017, 27(19): 1606694. DOI:
10.1002/adfm.201606694.
[19] YIN Z, XU K, JIANG S, et al. Recent progress on
two-dimensional layered materials for surface enhanced Raman spectroscopy and
their applications[J]. Materials Today Physics, 2021, 18: 100378. DOI:
10.1016/j.mtphys.2021.100378.
[20] MENG L, HU S, XU C, et al. Surface enhanced Raman
effect on CVD growth of WS2film[J]. Chemical Physics Letters, 2018,
707: 71-74. DOI: 10.1016/j.cplett.2018.07.038.
[21] SARYCHEVA A, MAKARYAN T, MALESKI K, et al.
Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering
substrate[J]. The Journal of Physical Chemistry C, 2017, 121(36): 19983-19988.
DOI: 10.1021/acs.jpcc.7b08180.
[22]
LIU M, SHI Y, WU M, et al. UV
surface-enhanced Raman scattering properties of SnSe2nanoflakes[J].
Journal of Raman Spectroscopy, 2020, 51(7): 1136-1143. DOI: 10.1002/jrs.5875.
[23] LIU M, SHI Y, ZHANG G, et al. Surface-enhanced Raman
spectroscopy of two-dimensional tin diselenide nanoplates[J]. Applied
Spectroscopy, 2018, 72(11): 1613-1620. DOI: 10.1177/0003702818794685.
[24] ZHANG Y, SHI Y, WU M, et al. Synthesis and
surface-enhanced Raman scattering of ultrathin SnSe2nanoflakes by
chemical vapor deposition[J]. Nanomaterials,
2018, 8(7): 515. DOI: 10.3390/nano8070515.
[25]
TIAN Y, WEI H, XU Y, et al. Influence
of SERS activity of SnSe2nanosheets doped with sulfur[J].
Nanomaterials, 2020, 10(10): 1910. DOI: 10.3390/nano10101910.
[26] CONG S, LIU X, JIANG Y, et al. Surface enhanced Raman
scattering revealed by interfacial charge-transfer transitions[J]. The
Innovation, 2020, 1(3): 100051. DOI: 10.1016/j.xinn.2020.100051.
[27] SENTHILKUMAR N, PARK S, KANG H S, et al. Performance
characteristics of p-i-n hetero-junction organic photovoltaic cell with CuPc:F4-TCNQ
hole transport layer[J]. Journal of Industrial and Engineering Chemistry, 2011,
17(4): 799-804. DOI: 10.1016/j.jiec.2011.05.022.
[28] WANG J L, XIAO F, YAN J, et al.
Difluorobenzothiadiazole-based small-molecule organic solar cells with 8.7%
efficiency by tuning of π-conjugated spacers and solvent vapor annealing[J].
Advanced Functional Materials, 2016, 26(11): 1803-1812. DOI: 10.1002/adfm.201505020.
[29] WU Y, CHEN Y, LI D, et al. Interface engineering of
organic-inorganic heterojunctions with enhanced charge transfer[J]. Applied
Catalysis B: Environmental, 2022, 309: 121261. DOI:
10.1016/j.apcatb.2022.121261.
[30] JI L F, FAN J X, ZHANG S F, et al. Theoretical study on
the charge transport in single crystals of TCNQ, F2-TCNQ and F4-TCNQ[J].
Physical Chemistry Chemical Physics, 2018, 20(5): 3784-3794. DOI:
10.1039/c7cp07189b.
[31] YILMAZ M, BABUR E, OZDEMIR M, et al. Nanostructured
organic semiconductor films for molecular detection with surface-enhanced Raman
spectroscopy[J]. Nature
Materials, 2017, 16(9): 918-924. DOI: 10.1038/nmat4957.
[32]
YILMAZ M, OZDEMIR M, ERDOGAN H, et al. Micro-/nanostructured
highly crystalline organic semiconductor films for surface-enhanced Raman
spectroscopy applications[J]. Advanced Functional Materials, 2015, 25(35):
5669-5676. DOI: 10.1002/adfm.201502151.1616-301X.
[33] DEMIREL G, GIESEKING R L M, OZDEMIR R, et al. Molecular
engineering of organic semiconductors enables noble metal-comparable SERS
enhancement and sensitivity[J]. Nature Communications, 2019, 10: 5502. DOI:
10.1038/s41467-019-13505-7.
[34] ZHENG Z, CONG S, GONG W, et al.Semiconductor SERS
enhancement enabled by oxygen incorporation[J]. Nature Communications, 2017, 8:
1993. DOI: 10.1038/s41467-017-02166-z.
[35] DENEME I, LIMAN G, CAN A, et al. Enabling
three-dimensional porous architectures via carbonyl functionalization and
molecular-specific organic-SERS platforms[J]. Nature Communications, 2021, 12:
6119. DOI: 10.1038/s41467-021-26385-7.
[36] HAN J, WANG F, HAN S, et al. Recent progress in 2D
inorganic/organic charge transfer heterojunction photodetectors[J]. Advanced
Functional Materials, 2022, 32(34): 2205150. DOI: 10.1002/adfm.202205150.
[37] LIU M, LIU W, ZHANG W, et al. π-conjugated small
organic molecule-modified 2D MoS2with a charge-localization effect
enabling direct and sensitive SERS detection[J]. ACS Applied Materials &
Interfaces, 2022, 14(51): 56975-56985. DOI: 10.1021/acsami.2c17277.
[38] 刘文英,
王公堂,
段鹏怡,
等.
F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响[J]. 物理学报, 2023, 72(3): 037402.
DOI:
10.7498/aps.72.20221958.
[39]
LYU B, LYU Y, MA L, et al. Fluorescence
quenching SERS detection: a 2D MoS2platform modified with a large
π‐conjugated organic molecule for bacterial detection[J]. Laser & Photonics
Reviews, 2025: 2401831. DOI: 10.1002/lpor.202401831.
[40] LIU M, ZHANG C, OU C, et al. Heterostructured
organic/MoS2nanowall with synergistic SERS enhancement enabling
direct and sensitive detection of contaminants[J]. Sensors and Actuators B:
Chemical, 2024, 401: 135007. DOI: 10.1016/j.snb.2023.135007.
[41] RAHIM A, MA L, SALEEM M, et al. V-shaped
heterostructure nanocavities array with CM and EM coupled enhancement for
ultra-sensitive SERS substrate[J]. Advanced Science, 2024, 11(48): 2409838.
DOI: 10.1002/advs.202409838.
[42] LIU Z Y, SOKRATIAN A, DUDA A M, et al. Anionic
nanoplastic contaminants promote Parkinson's disease–associatedα-synuclein
aggregation[J]. Science Advances, 2023, 9(46): eadi8716. DOI:
10.1126/sciadv.adi8716.
[43] LIN S, ZHANG H, WANG C, et al. Metabolomics reveal
nanoplastic-induced mitochondrial damage in human liver and lung cells[J].
Environmental Science & Technology, 2022, 56(17): 12483-12493. DOI:
10.1021/acs.est.2c03980.
[44] IVLEVA N P. Chemical analysis of microplastics and
nanoplastics: challenges, Advanced Methods, and Perspectives[J]. Chemical
Reviews, 2021, 121(19): 11886-11936. DOI: 10.1021/acs.chemrev.1c00178.
[45] VÉLEZ-ESCAMILLA L Y, CONTRERAS-TORRES F F. Latest
advances and developments to detection of micro‐ and nanoplastics using
surface‐enhanced Raman spectroscopy[J]. Particle & Particle Systems
Characterization, 2022, 39(3): 2100217. DOI: 10.1002/ppsc.202100217.
[46] QIAN N, GAO X, LANG X, et al. Rapid single-particle
chemical imaging of nanoplastics by SRS microscopy[J]. Proceedings of the
National Academy of Sciences of the United States of America, 2024, 121(3):
e2300582121. DOI: 10.1073/pnas.2300582121.
[47] MA L, RAHIM A, LYU B, et al. Synergistic SERS effects
in organic/MoS2heterojunctions with cavity structure enabling
nanoplastics screening and antibiotic adsorption behavior detection[J]. Chinese
Physics B, 2025, 34(4): 047402. DOI: 10.1088/1674-1056/ada888.
[48] ZHANG J, ZHOU M, LI X, et al. Recent advances of
fluorescent sensors for bacteria detection-A review[J]. Talanta, 2023, 254:
124133. DOI: 10.1016/j.talanta.2022.124133.
[49] DAI S, YE R, HUANG J, et al. Distinct lipid membrane
interaction and uptake of differentially charged nanoplastics in bacteria[J].
Journal of Nanobiotechnology, 2022, 20(1): 191. DOI:
10.1186/s12951-022-01321-z.
[50] LIN C, LI Y, PENG Y,
et al. Recent development of surface-enhanced Raman scattering for
biosensing[J]. Journal of Nanobiotechnology, 2023, 21(1): 149. DOI:
10.1186/s12951-023-01890-7. |