山东科学

• 环境与生态 •    

燃煤过程中持久性有机污染物排放研究进展

曹善勇1,李玉洲1,孙苗青1,陈令强2,徐劲松2,王刚1,陈相峰3,赵凌曦3*   

  1. 1华电莱州发电有限公司,山东 烟台261441;2 中国华电集团有限公司山东公司,山东 济南250014;3 齐鲁工业大学(山东省科学院)山东省分析测试中心,山东 济南250014
  • 收稿日期:2025-05-08 接受日期:2025-06-26 上线日期:2025-11-19
  • 通信作者: 赵凌曦 E-mail:lingxi0716@163.com
  • 作者简介:曹善勇(1987—),男,学士,高级工程师。研究方向为热控专业。E-mail:csy2711@163.com
  • 基金资助:
    山东企业技术创新项目(2024537010000879,2024537020000144)

Research progress on the emissions of persistent organic pollutants during coal combustion

CAO Shanyong1,LI Yuzhou1,SUN Miaoqing1,CHEN Lingqiang2,XU Jinsong2,WANG Gang1,CHEN Xiangfeng3,ZHAO Lingxi3*   

  1. 1. Huadian Laizhou Power Generation Co., Ltd., Laizhou 261441, China;2. Shandong Company, China Huadian Co., Ltd., Jinan 250014, China;3. Shandong Analysis and Test Center,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
  • Received:2025-05-08 Accepted:2025-06-26 Online:2025-11-19
  • Contact: ZHAO Lingxi E-mail:lingxi0716@163.com

摘要: 燃煤过程中产生的持久性有机污染物(POPs)因环境持久性、生物蓄积性和毒性效应成为全球环境治理焦点。该文系统梳理了燃煤中多环芳烃(PAHs)、卤代多环芳烃(HPAHs)、多氯联苯(PCBs)及二噁英类(PCDD/Fs)等POPs的形成机制、排放特征、控制技术及健康风险。研究表明,POPs生成受化学动力学路径(前驱物生成、卤代反应、表面催化合成)和燃烧条件、煤质特性、飞灰催化等多因素耦合调控,其排放强度由燃烧条件、煤质特性与末端治理技术的协同效应决定。不同燃烧设备POPs排放存在显著异质性,PAHs主要富集于细颗粒物上,HPAHs和PCBs排放受煤质与燃烧技术影响显著。当前,燃烧前处理、过程控制及后处理技术已实现部分POPs减排,但在新型污染物识别、跨介质迁移解析及全球治理框架完善仍需突破。人体通过吸入、饮食等途径暴露于POPs,可致呼吸、免疫和生殖系统疾病,部分区域健康风险超安全阈值。未来研究需聚焦新型污染物特性、优化协同减排技术体系,并完善多介质风险评估框架。

关键词: 燃煤, 持久性有机污染物, 排放特征, 减排技术

Abstract: Persistent organic pollutants (POPs) generated during coal combustion have become a global focus of environmental governance because of their environmental persistence, bioaccumulation potential, and toxic effects. This study systematically reviews the formation mechanisms, emission characteristics, control technologies, and health risks of coal-derived POPs, such as polycyclic aromatic hydrocarbons (PAHs), halogenated PAHs (HPAHs), polychlorinated biphenyls (PCBs), and dioxins and furans. This study shows that POP formation is regulated by chemical kinetic pathways (precursor generation, halogenation, and surface-catalyzed synthesis) and the coupled effects of combustion conditions, coal properties, and fly ash catalysis. Their emission intensity is determined by the synergistic effects of combustion parameters, coal quality, and end-of-pipe control technologies. Remarkable heterogeneity exists in POP emissions from different combustion devices: PAHs are predominantly enriched in fine particles (particulate matter 2.5, PM2.5), whereas emissions of HPAHs and PCBs are considerably influenced by coal chlorine content and combustion technologies. Current precombustion treatment, in-combustion control, and postcombustion technologies partially reduced POPs; however, breakthroughs are needed for identifying emerging pollutants, analyzing cross-media migration mechanisms, and improving global governance frameworks. Human exposure to POPs through inhalation and dietary intake may cause respiratory, immune, and reproductive system diseases, with health risks exceeding safety thresholds in some regions. Future research should focus on the characteristics of emerging pollutants, optimizing synergistic emission reduction technology systems, and improving multimedia risk assessment frameworks.

Key words: coal combustion, persistent organic pollutants, emission characteristics, reduction technologies

中图分类号: 

  • X51

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0