山东科学

• 交通运输 •    

基于旅客出行需求数据的机场巴士站点布局与路径优化研究

何佳,赵小奇   

  1. 北京工业大学 交通工程北京市重点实验室,北京 100124
  • 收稿日期:2024-11-12 接受日期:2024-12-20 上线日期:2025-09-01
  • 通信作者: 何佳 E-mail:hejia@bjut.edu.cn
  • 作者简介:何佳,(1990—),男,博士,副教授,研究方向为民航交通
  • 基金资助:
    国家自然科学基金项目(72371004,72231001)

Research on the layout and route optimization of airport shuttle bus stations based on passenger travel demand data

HE Jia, ZHAO Xiaoqi   

  1. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2024-11-12 Accepted:2024-12-20 Published:2025-09-01
  • Contact: HE Jia E-mail:hejia@bjut.edu.cn

摘要: 基于城市公交和地铁刷卡数据,分析了旅客的实际出行需求,为机场巴士站点选址与线路优化提供了数据支持。首先,通过对刷卡数据的分析,识别出旅客的出行需求点,应用K-medoids聚类算法对全市旅客的出行需求进行聚类,并将聚类得到的出行需求中心与火车站等重要交通枢纽作为巴士站点,为旅客提供便捷的接驳服务。其次,利用路网分析和路径优化算法生成站点间的最优路径,以提升机场巴士的服务覆盖率和运营效率。最后,基于优化算法所得的路径推荐结果并结合人工校正,形成了推荐路线方案。对比路线评价结果显示,优化后的机场巴士路线能够显著缩短旅客的总步行距离。本研究以实际出行需求为导向,优化机场巴士的站点布局与路径规划,为机场接驳服务体系的完善提供了科学支持。

关键词: 机场出行需求, 需求中心识别, 机场巴士, 站点选址, 路径优化

Abstract: This study analyzed actual passenger travel demand based on city bus and subway card swipe data to provide data support for airport bus station selection and route optimization. First, travel demand centers were identified by analyzing card swipe data, and the K-medoids clustering algorithm was used to cluster city-wide travel demands. The resulting travel demand centers, along with major transportation hubs such as railway stations, were selected as shuttle bus stations to provide passengers with convenient transfer services. Second, optimal routes between stations were generated using network analysis and route optimization algorithms to improve the service coverage and operational efficiency of the airport shuttle. Finally, recommended routes were refined through manual adjustments of the optimal routes. A comparative analysis of route evaluation results revealed that the optimal airport shuttle routes significantly reduced the total walking distance of passengers. This study optimized airport bus station layout and route planning based on actual travel demand, providing scientific support for improving airport transfer services.

Key words: airport travel demand, demand center identification, airport shuttle bus, station selection, route optimization

中图分类号: 

  • U491

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0