山东科学 ›› 2023, Vol. 36 ›› Issue (2): 103-111.doi: 10.3976/j.issn.1002-4026.2023.02.013
ZHUANG Hao(), LI Yang(
), TAO Mingkun
摘要:
在自动驾驶系统中,系统需要准确识别驾驶人的意图,来帮助驾驶人在复杂的交通场景中安全驾驶。针对目前驾驶人意图识别准确率低,没有考虑优化特征对模型准确率影响的问题,运用深度学习知识,提出了一种基于时间序列模型的驾驶人意图识别方法。该方法基于Attention机制融合了卷积神经网络(convolutional neural networks,CNN)和长短时记忆网络(long short-term memory network,LSTM),引入车辆自身信息和环境信息作为时空输入来捕捉周围车辆的空间交互和时间演化。该方法可同时预测目标车辆驾驶人横向驾驶意图和纵向驾驶意图,并在实际道路数据集NGSIM(next generation simulation)上进行了训练和验证。实验结果表明,所提出的CNN-LSTM-Attention模型能够准确预测高速公路环境下驾驶人的驾驶意图,与LSTM模型和CNN-LSTM模型相比具有明显的优势,为自动驾驶系统的安全运行提供了有效保障。
中图分类号:
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0