[1] |
WU J L, JIANG K, LI G H, et al. Molecularly coupled two-dimensional titanium oxide and carbide sheets for wearable and high-rate quasi-solid-state rechargeable batteries[J]. Advanced Functional Materials, 2019, 29(30): 1901576. DOI: 10.1002/adfm.201901576.
doi: 10.1002/adfm.201901576
|
[2] |
PAN Z H, YANG J, ZHANG Q C, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9(9): 1802753. DOI: 10.1002/aenm.201802753.
doi: 10.1002/aenm.201802753
|
[3] |
MA Q, ZENG X X, YUE J P, et al. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13): 1803854. DOI: 10.1002/aenm.201803854.
doi: 10.1002/aenm.201803854
|
[4] |
HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. DOI: 10.1002/aenm.201804004.
doi: 10.1002/aenm.201804004
|
[5] |
ZHOU Y, WAN C J, YANG Y S, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials, 2019, 29(1): 1806220. DOI: 10.1002/adfm.201806220.
doi: 10.1002/adfm.201806220
|
[6] |
YU Z J, JIAO S Q, LI S J, et al. Flexible stable solid-state Al-ion batteries[J]. Advanced Functional Materials, 2019, 29(1): 1806799. DOI: 10.1002/adfm.201806799.
doi: 10.1002/adfm.201806799
|
[7] |
ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(50): e1902029. DOI: 10.1002/adma.201902029.
doi: 10.1002/adma.201902029
|
[8] |
FAN L, WEI S Y, LI S Y, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657. DOI: 10.1002/aenm.201702657.
doi: 10.1002/aenm.201702657
|
[9] |
D'ANGELO A J, PANZER M J. Decoupling the ionic conductivity and elastic modulus of gel electrolytes: fully zwitterionic copolymer scaffolds in lithium salt/ionic liquid solutions[J]. Advanced Energy Materials, 2018, 8(26): 1801646. DOI: 10.1002/aenm.201801646.
doi: 10.1002/aenm.201801646
|
[10] |
CHA H, KIM J, LEE Y, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(43): e1702989. DOI: 10.1002/smll.201702989.
doi: 10.1002/smll.201702989
|
[11] |
CHEN D, LOU Z, JIANG K, et al. Device configurations and future prospects of flexible/stretchable lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(51): 1805596. DOI: 10.1002/adfm.201805596.
doi: 10.1002/adfm.201805596
|
[12] |
FAN W, LI N W, ZHANG X L, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries[J]. Advanced Science, 2018, 5(9): 1800559. DOI: 10.1002/advs.201800559.
doi: 10.1002/advs.201800559
|
[13] |
ZHAO Y S, ALSAID Y, YAO B W, et al. Wood-inspired morphologically tunable aligned hydrogel for high-performance flexible all-solid-state supercapacitors[J]. Advanced Functional Materials, 2020, 30(10): 1909133. DOI: 10.1002/adfm.201909133.
doi: 10.1002/adfm.201909133
|
[14] |
QIU J L, LIU X Y, CHEN R S, et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte[J]. Advanced Functional Materials, 2020, 30(22): 1909392. DOI: 10.1002/adfm.201909392.
doi: 10.1002/adfm.201909392
|
[15] |
SONG Z S, DING J, LIU B, et al. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(22): e1908127. DOI: 10.1002/adma.201908127.
doi: 10.1002/adma.201908127
|
[16] |
YE Y H, ZHANG Y F, CHEN Y, et al. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors[J]. Advanced Functional Materials, 2020, 30(35): 2003430. DOI: 10.1002/adfm.202003430.
doi: 10.1002/adfm.202003430
|
[17] |
LIU X, ZHANG Q, GAO G H. DNA-inspired anti-freezing wet-adhesion and tough hydrogel for sweaty skin sensor[J]. Chemical Engineering Journal, 2020, 394: 124898. DOI: 10.1016/j.cej.2020.124898.
doi: 10.1016/j.cej.2020.124898
|
[18] |
LIU X, ZHANG Q, GAO G H. Solvent-resistant and nonswellable hydrogel conductor toward mechanical perception in diverse liquid media[J]. ACS Nano, 2020, 14(10): 13709-13717. DOI: 10.1021/acsnano.0c05932.
doi: 10.1021/acsnano.0c05932
|
[19] |
KIM C C, LEE H H, OH K H, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687. DOI: 10.1126/science.aaf8810.
doi: 10.1126/science.aaf8810
|
[20] |
WANG Y H, LV C, JI G C, et al. An all-in-one supercapacitor with high stretchability via a facile strategy[J]. Journal of Materials Chemistry A, 2020, 8(17): 8255-8261. DOI: 10.1039/d0ta00757a.
doi: 10.1039/d0ta00757a
|
[21] |
CUI C Y, FAN C C, WU Y H, et al. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(49): e1905761. DOI: 10.1002/adma.201905761.
doi: 10.1002/adma.201905761
|
[22] |
WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie (International Ed in English), 2019, 58(44): 15707-15711. DOI: 10.1002/anie.201908985.
doi: 10.1002/anie.201908985
|
[23] |
LIU H Y, WANG X, CAO Y X, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25334-25344. DOI: 10.1021/acsami.0c06067.
doi: 10.1021/acsami.0c06067
|
[24] |
XU J J, JING R N, REN X Y, et al. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness[J]. Journal of Materials Chemistry A, 2020, 8(18): 9373-9381. DOI: 10.1039/d0ta02370a.
doi: 10.1039/d0ta02370a
|
[25] |
BAO D Q, WEN Z, SHI J H, et al. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature[J]. Journal of Materials Chemistry A, 2020, 8(27): 13787-13794. DOI: 10.1039/d0ta03215h.
doi: 10.1039/d0ta03215h
|
[26] |
ZHAO X, CHEN F, LI Y H, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications, 2018, 9: 3579. DOI: 10.1038/s41467-018-05904-z.
doi: 10.1038/s41467-018-05904-z
|
[27] |
MO F N, LIANG G J, WANG D H, et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices[J]. EcoMat, 2019, 1(1): e12008. DOI: 10.1002/eom2.12008.
doi: 10.1002/eom2.12008
|
[28] |
GUAN L, YAN S, LIU X, et al. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion[J]. Journal of Materials Chemistry B, 2019, 7(34): 5230-5236. DOI: 10.1039/c9tb01340g.
doi: 10.1039/c9tb01340g
|
[29] |
YANG J B, XU Z, WANG J J, et al. Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS/cm at -40 ℃ through hydrated lithium ion hopping migration[J]. Advanced Functional Materials, 2021, 31(18): 2009438. DOI: 10.1002/adfm.202009438.
doi: 10.1002/adfm.202009438
|
[30] |
GERMAN B, DAMODARAN S, KINSELLA J E. Thermal dissociation and association behavior of soy proteins[J]. Journal of Agricultural and Food Chemistry, 1982, 30(5): 807-811. DOI: 10.1021/jf00113a002.
doi: 10.1021/jf00113a002
|
[31] |
UTSUMI S, KINSELLA J E. Structure-function relationships in food proteins: subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins[J]. Journal of Agricultural and Food Chemistry, 1985, 33(2): 297-303. DOI: 10.1021/jf00062a035.
doi: 10.1021/jf00062a035
|
[32] |
LI X, LI Y, HUA Y, et al. Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins[J]. Food Chemistry, 2007, 104(4): 1410-1417. DOI: 10.1016/j.foodchem.2007.02.003.
doi: 10.1016/j.foodchem.2007.02.003
|
[33] |
NAN J Y, ZHANG G T, ZHU T Y, et al. A highly elastic and fatigue-resistant naturalprotein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors[J]. Advanced Science, 2020, 7(14): 2000587. DOI: 10.1002/advs.202000587.
doi: 10.1002/advs.202000587
|