山东科学 ›› 2018, Vol. 31 ›› Issue (4): 118-125.doi: 10.3976/j.issn.1002-4026.2018.04.018

• 交通运输 • 上一篇    下一篇

基于集成算法的路段短时行驶时间预测

蒋怡玥1,董蜀黔2 ,周淑敏1   

  1. 1. 北京交通大学交通运输学院,北京 100044;2. 北京邮电大学信息与通信工程学院,北京 100876
  • 收稿日期:2017-11-10 出版日期:2018-08-20 发布日期:2018-08-20
  • 作者简介:蒋怡玥(1994—),女,硕士研究生,研究方向为交通运输规划与管理。E-mail: 16120822@bjtu.edu.cn
  • 基金资助:

    创新研究群体项目(71621001)

Short term prediction of road travel time based on an ensemble algorithm

JIANG Yi-yue1, DONG Shu-qian2, ZHOU Shu-min1   

  1. 1.School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044, China; 2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2017-11-10 Online:2018-08-20 Published:2018-08-20

摘要:

为了更好地解决路段行驶时间的短时预测问题,提出并改善了一种基于树的集成算法。针对小时间尺度下交通时变性强这一特性,构建更加鲁棒的梯度提升树(GBDT)以减少突变点的干扰。为了克服偏差方差窘境,将随机树(RF)与GBDT进行融合,提出RF-GBDT的集成算法,并考虑各种历史旅行时间数据的相关变量以提高模型的可解释性。预测结果表明,与单独的RF或GBDT相比,RF-GBDT具有更好的预测准确度与算法稳定性。

关键词: 短时预测, 集成, 随机森林, 行驶时间, 梯度提升树

Abstract:

In order to better solve the short term prediction problem of travel time on links, a tree based ensemble method was proposed and improved. First, a more robust GBDT was established to reduce the disturbance caused by bursts aiming at the strong upheavals of traffic in a small time scale. Then, the RF and GBDT were fused and a new method for RF-GBDT was proposed to overcome the problem of bias-variance dilemma. In addition, various relevant variables derived from historical travel time data were considered to improve the interpretability of the model. The results of predictions show that compared with the single RF or GBDT, the RF-GBDT method is preferable in the accuracy and the stability of algorithms.

Key words: short term prediction, gradient boosting decision tree(GBDT), random forest (RF), ensemble, travel time

中图分类号: 

  • U213.2

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0