1]FEROZE N, ASLAM M. On posterior analysis of inverse Rayleigh distribution under singly and doubly type II censored data[J]. International Journal of Probability and Statistics, 2012, 1(5): 145152.
[2]ROSAIAH K, KANTAM R R L. Acceptance sampling based on the inverse Rayleigh distribution[J]. Economic Quality Control, 2005, 20(2): 277286.
[3]BROWN M. Estimation of an exponential distribution[J]. Probability in the Engineering and Informational Sciences, 1997, 11(3): 341359.
[4]LIN J G. Parameter estimations of Rayleigh distribution[J]. Chinese Quart J Math, 2000, 15(4): 4954.
[5]PATIL G P,WANI J K. Minimum variance unbiased estimation of the distribution function admitting a suffcient statistic[J].Annals of the Institute of Statistical Mathematics, 1966, 18(1): 3947.
[6]SEHEULT A H,QUESENBERRY C P. On unbiased estimation of density functions[J]. The Annals of Mathematical Statistics, 1971 , 42(4): 14341438.
[7]徐传胜. 圣彼得堡数学学派研究[M]. 北京: 科学出版社. 2016: 183195.
[8]成平,陈希孺,陈桂景,等. 参数估计[M]. 上海: 上海科学技术出版社. 1985: 8895.
[9]OLVER F W J, LOZIER D W, BOISVERT R F,et al. NIST handbook of mathematical functions[M]. New York,US : Cambridge University Press, 2010.
[10]NEMES G. On the coeffcients of the asymptotic expansion of n![J]. Journal of Integer Sequences, 2010, 13(6):15. |