[1] |
胡春宏, 张晓明. 论黄河水沙变化趋势预测研究的若干问题[J]. 水利学报, 2018, 49(9): 1028-1039. DOI:10.13243/j.cnki.slxb.20180647.
|
[2] |
LI L, NI J R, CHANG F, et al. Global trends in water and sediment fluxes of the world’s large rivers[J]. Science Bulletin, 2020, 65(1): 62-69.DOI:10.1016/j.scib.2019.09.012.
|
[3] |
WANG S, FU B J, PIAO S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9: 38-41. DOI:10.1038/ngeo2602.
|
[4] |
WHITE E, KAPLAN D. Restore or retreat? saltwater intrusion and water management in coastal wetlands[J]. Ecosystem Health and Sustainability, 2017, 3(1): e01258. DOI:10.1002/ehs2.1258.
|
[5] |
崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策[J]. 中国科学院院刊, 2017, 32(4): 418-425. DOI:10.16418/j.issn.1000-3045.2017.04.013.
|
[6] |
WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9): nwaa296. DOI:10.1093/nsr/nwaa296.
|
[7] |
WANG C D, LI X, YU H J, et al. Tracing the spatial variation and value change of ecosystem services in Yellow River Delta, China[J]. Ecological Indicators, 2019, 96: 270-277.DOI:10.1016/j.ecolind.2018.09.015.
|
[8] |
RENZI J J, HE Q, SILLIMAN B R. Harnessing positive species interactions to enhance coastal wetland restoration[J]. Frontiers in Ecology and Evolution, 2019, 7: 131. DOI:10.3389/fevo.2019.00131.
|
[9] |
ZHANG H, CHEN X B, LUO Y M. An overview of ecohydrology of the Yellow River delta wetland[J]. Ecohydrology & Hydrobiology, 2016, 16(1): 39-44.DOI:10.1016/j.ecohyd.2015.10.001.
|
[10] |
ADAME M F, HERMOSO V, PERHANS K, et al. Selecting cost-effective areas for restoration of ecosystem services[J]. Conservation Biology, 2015, 29(2): 493-502. DOI:10.1111/cobi.12391.
pmid: 25199996
|
[11] |
NEWTON A, ICELY J, CRISTINA S, et al. Anthropogenic, direct pressures on coastal wetlands[J]. Frontiers in Ecology and Evolution, 2020, 8: 144. DOI:10.3389/fevo.2020.00144.
|
[12] |
陈沈良, 谷硕, 姬泓宇, 等. 新入海水沙情势下黄河口的地貌演变[J]. 泥沙研究, 2019, 44(5): 61-67. DOI:10.16239/j.cnki.0468-155x.2019.05.010.
|
[13] |
李贺, 黄翀, 张晨晨, 等. 1976年以来黄河三角洲海岸冲淤演变与入海水沙过程的关系[J]. 资源科学, 2020, 42(3): 486-498.
doi: 10.18402/resci.2020.03.07
|
[14] |
韩香举, 陈沈良, 付作民, 等. 现行黄河口滨海区冲淤时空演变及其影响因素[J]. 海洋通报, 2020, 39(5),567-580.
|
[15] |
ZHENG S, WU B S, WANG K R, et al. Evolution of the Yellow River Delta, China: Impacts of channel avulsion and progradation[J]. International Journal of Sediment Research, 2017, 32(1): 34-44.DOI:10.1016/j.ijsrc.2016.10.001.
|
[16] |
徐丛亮, 陈沈良, 陈俊卿. 新情势下黄河口出汊流路三角洲体系的演化模式[J]. 海岸工程, 2018, 37(4): 35-43.
|
[17] |
XU X G, CHEN Z X, FENG Z. From natural driving to artificial intervention: Changes of the Yellow River estuary and delta development[J]. Ocean & Coastal Management, 2019, 174: 63-70.DOI:10.1016/j.ocecoaman.2019.03.009.
|
[18] |
ZHOU R, LI Y Z, WU J J, et al. Need to link river management with estuarine wetland conservation: A case study in the Yellow River Delta, China[J]. Ocean & Coastal Management, 2017, 146: 43-49. DOI:10.1016/j.ocecoaman.2017.06.004.
|
[19] |
LI P, KE Y H, BAI J H, et al. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data[J]. Marine Pollution Bulletin, 2019, 149: 110518.DOI:10.1016/j.marpolbul.2019.110518.
|
[20] |
ZHAO Q Q, BAI J H, ZHANG G L, et al. Effects of water and salinity regulation measures on soil carbon sequestration in coastal wetlands of the Yellow River Delta[J]. Geoderma, 2018, 319: 219-229. DOI:10.1016/j.geoderma.2017.10.058.
|
[21] |
陆兆华, 马克明, 杨玉珍, 等. 黄河三角洲退化湿地生态恢复:理论、方法与实践[M]. 北京: 科学出版社, 2013.
|
[22] |
刘康, 闫家国, 邹雨璇, 等. 黄河三角洲盐地碱蓬盐沼的时空分布动态[J]. 湿地科学, 2015, 13(6): 696-701. DOI:10.13248/j.cnki.wetlandsci.2015.06.007.
|
[23] |
LIU J K, ENGEL B A, WANG Y, et al. Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta[J]. Science of the Total Environment, 2020, 702: 134889. DOI:10.1016/j.scitotenv.2019.134889.
|
[24] |
BAI J H, ZHAO Q Q, WANG W, et al. Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: Depth distributions, sources and toxic risks[J]. Ecological Indicators, 2019, 96: 91-98. DOI:10.1016/j.ecolind.2018.08.026.
|
[25] |
REN G B, WANG J J, WANG A D, et al. Monitoring the invasion of smooth cordgrass Spartina alterniflora within the modern Yellow River Delta using remote sensing[J]. Journal of Coastal Research, 2019, 90(sp1): 135. DOI:10.2112/si90-017.1.
|
[26] |
NING Z, CHEN C, ZHU Z, et al. Tidal channel-mediated gradients facilitate Spartina alterniflora invasion in coastal ecosystems: Implications for invasive species management[J]. Marine Ecology Progress Series, 2021, 659: 59-73. DOI:10.3354/meps13560.
|
[27] |
国家林业和草原局自然资源部生态环境部水利部农业农村部关于印发《互花米草防治治理专项行动计划(2022—2025年)》的通知[EB/OL]. [2025-01-20]. https://www.gov.cn/xinwen/2023-03/16/content_5747029.htm.
|
[28] |
SINGH M, SINHA R. Distribution, diversity, and geomorphic evolution of floodplain wetlands and wetland complexes in the Ganga Plains of north Bihar, India[J]. Geomorphology, 2020, 351: 106960. DOI:10.1016/j.geomorph.2019.106960.
|
[29] |
王雪宏, 栗云召, 孟焕, 等. 黄河三角洲新生湿地植物群落分布格局[J]. 地理科学, 2015, 35(08), 1021-1026.
|
[30] |
STAGG C L, OSLAND M J, MOON J A, et al. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss[J]. Annals of Botany, 2020, 125(2): 365-376. DOI:10.1093/aob/mcz144.
pmid: 31532484
|
[31] |
RACCHETTI E, BARTOLI M, SOANA E, et al. Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification[J]. Biogeochemistry, 2011, 103(1): 335-354. DOI:10.1007/s10533-010-9477-7.
|
[32] |
KEESSTRA S, NUNES J P, SACO P, et al. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?[J]. Science of the Total Environment, 2018, 644: 1557-1572. DOI:10.1016/j.scitotenv.2018.06.342.
|
[33] |
LIU X Q, WANG H Z. Effects of loss of lateral hydrological connectivity on fish functional diversity[J]. Conservation Biology, 2018, 32(6): 1336-1345. DOI:10.1111/cobi.13142.
pmid: 29802749
|
[34] |
WANG Q, XIE T, NING Z H, et al. Enhancement of lateral connectivity promotes the establishment of plants in saltmarshes[J]. Science of the Total Environment, 2021, 767: 145484. DOI:10.1016/j.scitotenv.2021.145484.
|
[35] |
ELSEY-QUIRK T, GRAHAM S A, MENDELSSOHN I A, et al. Mississippi river sediment diversions and coastal wetland sustainability: Synthesis of responses to freshwater, sediment, and nutrient inputs[J]. Estuarine, Coastal and Shelf Science, 2019, 221: 170-183. DOI:10.1016/j.ecss.2019.03.002.
|
[36] |
KIRWAN M L, PATRICK MEGONIGAL J. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478): 53-60. DOI:10.1038/nature12856.
|
[37] |
崔保山, 蔡燕子, 谢湉, 等. 湿地水文连通的生态效应研究进展及发展趋势[J]. 北京师范大学学报(自然科学版), 2016, 52(6): 738-746. DOI:10.16360/j.cnki.jbnuns.2016.06.011.
|
[38] |
COHEN M J, CREED I F, ALEXANDER L, et al. Do geographically isolated wetlands influence landscape functions?[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 1978-1986. DOI:10.1073/pnas.1512650113.
pmid: 26858425
|
[39] |
HOSEN J D, ARMSTRONG A W, PALMER M A. Dissolved organic matter variations in coastal plain wetland watersheds: The integrated role of hydrological connectivity, land use, and seasonality[J]. Hydrological Processes, 2018, 32(11): 1664-1681. DOI:10.1002/hyp.11519.
|
[40] |
SÁLY P, DOLEZSAI A, LUKÁCS B A, et al. Characterizing surrogacy performance in the systematic conservation planning of riverine networks[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30(2): 246-259. DOI:10.1002/aqc.3261.
|
[41] |
EPTING S M, HOSEN J D, ALEXANDER L C, et al. Landscape metrics as predictors of hydrologic connectivity between Coastal Plain forested wetlands and streams[J]. Hydrological Processes, 2018, 32(4): 516-532. DOI:10.1002/hyp.11433.
pmid: 29576682
|
[42] |
CREED I F, LANE C R, SERRAN J N, et al. Enhancing protection for vulnerable waters[J]. Nature Geoscience, 2017, 10(11): 809-815. DOI:10.1038/ngeo3041.
pmid: 30079098
|
[43] |
GOLDEN H E, CREED I F, ALI G, et al. Integrating geographically isolated wetlands into land management decisions[J]. Frontiers in Ecology and the Environment, 2017, 15(6): 319-327. DOI:10.1002/fee.1504.
pmid: 30505246
|
[44] |
ZHAO Q Q, BAI J H, HUANG L B, et al. A review of methodologies and success indicators for coastal wetland restoration[J]. Ecological Indicators, 2016, 60: 442-452. DOI:10.1016/j.ecolind.2015.07.003.
|
[45] |
KARBERG J M, BEATTIE K C, O’DELL D I, et al. Tidal hydrology and salinity drives salt marsh vegetation restoration and Phragmites australis control in new England[J]. Wetlands, 2018, 38(5): 993-1003. DOI:10.1007/s13157-018-1051-4.
|
[46] |
IVES C D, BEKESSY S A. The ethics of offsetting nature[J]. Frontiers in Ecology and the Environment, 2015, 13(10), 568-573.
|
[47] |
JOSHI M, MISHRA A, JHA B. NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte[J]. Industrial Crops and Products, 2012, 35(1): 313-316. DOI:10.1016/j.indcrop.2011.06.024.
|
[48] |
张爱琴, 庞秋颖, 阎秀峰. 碱蓬属植物耐盐机理研究进展[J]. 生态学报, 2013, 33(12): 3575-3583. DOI:10.5846/stxb201211291710.
|
[49] |
XIE T, CUI B S, LI S Z, et al. Management of soil thresholds for seedling emergence to re-establish plant species on bare flats in coastal salt marshes[J]. Hydrobiologia, 2019, 827(1): 51-63. DOI:10.1007/s10750-018-3589-9.
|
[50] |
WANG Q, CUI B S, LUO M, et al. Designing microtopographic structures to facilitate seedling recruitment in degraded salt marshes[J]. Ecological Engineering, 2018, 120: 266-273. DOI:10.1016/j.ecoleng.2018.06.012.
|
[51] |
BALKE T, BOUMA T J, HORSTMAN E M, et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats[J]. Marine Ecology Progress Series, 2011, 440, 1-9.
|
[52] |
BALKE T, HERMAN P M J, BOUMA T J. Critical transitions in disturbance-driven ecosystems: Identifying windows of opportunity for recovery[J]. Journal of Ecology, 2014, 102(3): 700-708. DOI:10.1111/1365-2745.12241.
|
[53] |
TEMMINK R J M, CHRISTIANEN M J A, FIVASH G S, et al. Mimicry of emergent traits amplifies coastal restoration success[J]. Nature Communications, 2020, 11(1): 3668. DOI:10.1038/s41467-020-17438-4.
pmid: 32699271
|
[54] |
SILLIMAN B R, SCHRACK E, HE Q, et al. Facilitation shifts paradigms and can amplify coastal restoration efforts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(46): 14295-14300. DOI:10.1073/pnas.1515297112.
pmid: 26578775
|
[55] |
GITTMAN R K, PETERSON C H, CURRIN C A, et al. Living shorelines can enhance the nursery role of threatened estuarine habitats[J]. Ecological Applications, 2016, 26(1): 249-263. DOI:10.1890/14-0716.
pmid: 27039523
|
[56] |
HE Q, SILLIMAN B R, LIU Z Z, et al. Natural enemies govern ecosystem resilience in the face of extreme droughts[J]. Ecology Letters, 2017, 20(2): 194-201. DOI:10.1111/ele.12721.
pmid: 28058801
|
[57] |
NING Z H, CHEN C, XIE T, et al. A novel herbivorous wood-borer insect outbreak triggers die-offs of a foundation plant species in coastal ecosystems[J]. Ecosystem Health and Sustainability, 2020, 6(1): 1823888.
|
[58] |
LAWRENCE P J, SMITH G R, SULLIVAN M J P, et al. Restored saltmarshes lack the topographic diversity found in natural habitat[J]. Ecological Engineering, 2018, 115: 58-66. DOI:10.1016/j.ecoleng.2018.02.007.
|
[59] |
VAN DEVENTER H, NEL J, MBONA N, et al. Desktop classification of inland wetlands for systematic conservation planning in data-scarce countries: Mapping wetland ecosystem types, disturbance indices and threatened species associations at country-wide scale[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26(1): 57-75. DOI:10.1002/aqc.2605.
|
[60] |
郭云, 梁晨, 李晓文. 基于系统保护规划的黄河流域湿地优先保护格局[J]. 应用生态学报, 2018, 29(9): 3024-3032. DOI:10.13287/j.1001-9332.201809.040.
|
[61] |
IWAMURA T, LE POLAIN DE WAROUX Y, MASCIA M B. Considering people in systematic conservation planning: Insights from land system science[J]. Frontiers in Ecology and the Environment, 2018, 16(7): 388-396. DOI:10.1002/fee.1824.
|
[62] |
BARNETT A, FARGIONE J, SMITH M P. Mapping trade-offs in ecosystem services from reforestation in the Mississippi alluvial valley[J]. BioScience, 2016, 66(3): 223-237. DOI:10.1093/biosci/biv181.
|
[63] |
ALBANESE G, HAUKOS D A. A network model framework for prioritizing wetland conservation in the Great Plains[J]. Landscape Ecology, 2017, 32(1): 115-130. DOI:10.1007/s10980-016-0436-0.
|
[64] |
DOU P, CUI B S. Dynamics and integrity of wetland network in estuary[J]. Ecological Informatics, 2014, 24: 1-10. DOI:10.1016/j.ecoinf.2014.06.002.
|
[65] |
ZAMBERLETTI P, ZAFFARONI M, ACCATINO F, et al. Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes[J]. Ecological Modelling, 2018, 384: 119-127. DOI:10.1016/j.ecolmodel.2018.05.008.
|
[66] |
UDEN D R, HELLMAN M L, ANGELER D G, et al. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands[J]. Ecological Applications, 2014, 24(7): 1569-1582. DOI:10.1890/13-1755.1.
pmid: 29210223
|
[67] |
ARTO I, GARCÍA-MUROS X, CAZCARRO I, et al. The socioeconomic future of deltas in a changing environment[J]. Science of the Total Environment, 2019, 648: 1284-1296. DOI:10.1016/j.scitotenv.2018.08.139.
|
[68] |
SLEETER B M, MARVIN D C, RICHARD CAMERON D, et al. Effects of 21st-century climate, land use, and disturbances on ecosystem carbon balance in California[J]. Global Change Biology, 2019, 25(10): 3334-3353. DOI:10.1111/gcb.14677.
pmid: 31066121
|
[69] |
DEE L E, ALLESINA S, BONN A, et al. Operationalizing network theory for ecosystem service assessments[J]. Trends in Ecology & Evolution, 2017, 32(2): 118-130. DOI:10.1016/j.tree.2016.10.011.
|