山东科学 ›› 2024, Vol. 37 ›› Issue (4): 105-111.doi: 10.3976/j.issn.1002-4026.20230093

• 交通运输 • 上一篇    下一篇

南京市轨道交通网络抗毁性及韧性研究

高占一1(), 朱成娟1,2,*(), 韩凌辉2   

  1. 1.大连交通大学 交通运输工程学院,辽宁 大连 116028
    2.大连海事大学 航运经济与管理学院,辽宁 大连 116026
  • 收稿日期:2023-06-05 出版日期:2024-08-20 发布日期:2024-08-05
  • 通信作者: 朱成娟 E-mail:gaozhanyi2021@163.com;cjzhu@djtu.edu.cn
  • 作者简介:高占一(1998—),男,硕士研究生,研究方向为城市轨道交通网络。E-mail:gaozhanyi2021@163.com
  • 基金资助:
    国家自然科学基金项目(72171033);辽宁省教育厅自然科学研究项目(JDL2019037)

Durability and resilience of Nanjing Rail Transit Network

GAO Zhanyi1(), ZHU Chengjuan1,2,*(), HAN Linghui2   

  1. 1. School of Traffic and Transportation Engineering,Dalian Jiaotong University, Dalian 116028,China
    2. School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026,China
  • Received:2023-06-05 Online:2024-08-20 Published:2024-08-05
  • Contact: ZHU Chengjuan E-mail:gaozhanyi2021@163.com;cjzhu@djtu.edu.cn

摘要:

基于网络拓扑化方法Space L构建了轨道交通网络拓扑结构模型,在用UCINET对网络特征进行分析的基础上,选取最大连通子图比例以及整体网络效率为指标对轨道交通网络抗毁性进行分析;综合分析节点的属性值,在采取变异系数法定权的基础上,使用TOPSIS法对节点重要度进行排序;通过摧毁单个重要度较高的节点分析网络韧性,采用指标排序恢复策略来恢复网络,从而得出轨道交通网络的平均韧性值。基于此建立的模型,对南京市2022年的轨道交通网络的抗毁性和韧性进行了分析,发现度值高的节点比其他指标对韧性影响更大,优先修复度值最大的节点会使得网络效率上升幅度最大,优先修复接近中心性最大的节点对网络效率的影响较小。

关键词: 复杂网络, 评价模型, 抗毁性, 网络韧性, 恢复策略, 最大连通子图, 网络效率

Abstract:

This study first constructs a topological structure model of the rail transit network based on the Space L network topology method. Herein, upon analyzing network characteristics using UCINET as a basis, the maximum connected subgraph ratio and overall network efficiency are selected as indicators to analyze the resilience of the rail transit network. Then, the article comprehensively analyzes the attribute values of nodes and employs the TOPSIS method to rank the importance of nodes using the coefficient of variation for weighting. Then network resilience is analyzed by destroying individual nodes with high importance, and network recovery is achieved through indicator-based ranking restoration strategies, ultimately yielding the average resilience value of the rail transit network. Furthermore, the resilience and robustness of the rail transit network of Nanjing in 2022 is analyzed based on the established model. Results show that nodes with high degree values often have a greater impact on resilience than other indicators. Prioritizing the repair of nodes with the highest degree values leads to the greatest increase in network efficiency, whereas repairing nodes with the highest closeness to the center has less impact on network efficiency.

Key words: complex networks, evaluation model, resistance to destruction, network resilience, recovery strategy, the largest connected subgraph, network efficiency

中图分类号: 

  • U121

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0