山东科学 ›› 2024, Vol. 37 ›› Issue (2): 104-116.doi: 10.3976/j.issn.1002-4026.20230167

• 交通运输 • 上一篇    下一篇

基于鲁棒性模拟的停机位分配问题的数值方法比较

刘海滨1(), 王炬博2, 巴博圣2, 王瑞昕2,*()   

  1. 1.中国民用航空华北地区空中交通管理局天津分局,天津 300300
    2.中国民航大学 中欧航空工程师学院,天津 300300
  • 收稿日期:2023-11-08 出版日期:2024-04-20 发布日期:2024-04-09
  • 通信作者: *王瑞昕,讲师,研究方向为应用数学。Tel:13752227285,E-mail:rxwang@cauc.edu.cn
  • 作者简介:刘海滨(1973—),硕士,工程师,研究方向为交通运输。E-mail:13820796935@163.com
  • 基金资助:
    中央高校基本科研业务费项目(3122021084);天津市应用基础研究多元投入基金(21JCQNJC00790);国家自然科学基金(72301278)

A numerical comparison of methods for solving the gate allocation problem based on robustness simulation

LIU Haibin1(), WANG Jubo2, BA Bosheng2, WANG Ruixin2,*()   

  1. 1. Tianjin Sub-bureau of North China Regional Air Traffic Management Bureau,CAAC,Tianjin 300300,China
    2. Sino-European Institute of Aviation Engineering,Civil Aviation University of China,Tianjin 300300,China
  • Received:2023-11-08 Online:2024-04-20 Published:2024-04-09

摘要:

为了提升机场停机坪分配的鲁棒性,针对大型国际机场航班延误常态化对机场运行稳定性的影响,构建了两种整数线性规划模型,并引入爬山算法与大邻域搜索(LNS)元启发式算法进行效能比较。同时,采用Monte Carlo方法对不同目标函数在处理航班冲突时的效果进行评估。测试结果表明LNS算法在提升大型机场停机位分配方案的鲁棒性方面表现卓越,在求解速度和方案质量上均有显著提升。特别是,当以空闲时间的平方作为目标函数时,其效果尤为突出。

关键词: 停机位分配, 固定作业问题, 机场, 组合优化, 大邻域搜索, 线性规划

Abstract:

Frequent delays of flights at large international airports can affect their smooth operation, hence, the airport apron allocation problem needs to be robustly optimized. In this study, we proposed two integer linear-programing models for solving this problem and used two algorithms for performance comparison: the hill-climbing and large-neighborhood search (LNS) metaheuristic algorithms. In addition, we used the Monte Carlo method to evaluate the effectiveness of different objective functions in dealing with flight conflicts. The final test results show that the LNS algorithm not only improves the robustness of the gate allocation scheme for large airports but also excels in speed and quality, especially, when the square of idle time is used as the objective function.

Key words: gate allocation, fixed job problem, airport, combinatorial optimization, large-neighborhood search, linear programing

中图分类号: 

  • U-9

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0