山东科学 ›› 2014, Vol. 27 ›› Issue (5): 54-59.doi: 10.3976/j.issn.1002-4026.2014.05.010

• 交通运输专栏 • 上一篇    下一篇

一种基于卡尔曼滤波的压缩跟踪算法研究

孙少军,李惠,宋华军   

  1. 191404部队装备部测靶科,河北 秦皇岛 066001; 2山东科技大学电子通信与物理学院,山东 青岛 266510; 3中国石油大学(华东)信息与控制工程学院,山东 东营 257061
  • 收稿日期:2014-01-03 出版日期:2014-10-20 发布日期:2014-10-20
  • 作者简介:孙少军(1976-),男,学士,工程师,研究方向为车辆跟踪、雷达信号处理。
  • 基金资助:
    国家自然科学基金 (61305012);中央高校基本科研业务费专项资金 (12CX04064A)

Compressive tracking algorithm based on Kalman filter

SUN Shao-jun,LI Hui,SONG Hua-jun   

  1. 1.Target Section of Equipment Department, Troop 91404, Qinhuangdao 066001, China; 2. School of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266510,China; 3. School of Information and Control Engineering, China University of Petroleum (East China), Dongying 257061, China
  • Received:2014-01-03 Online:2014-10-20 Published:2014-10-20

摘要: 根据道路交通监控视频的特点,采用压缩跟踪(CT)算法进行运动车辆的检测与跟踪。在摄像头变化较大、运动车辆尺度变化和背景变化等情况下,CT算法均具有很强的鲁棒性。但是当车辆被遮挡时,跟踪算法容易失效。为了解决这一问题,提出使用卡尔曼滤波对遮挡的车辆进行轨迹预测。卡尔曼滤波能根据CT算法跟踪目标的轨迹,有效地预测目标遮挡时的轨迹。实验结果表明,本算法不但可以较好地处理跟踪车辆尺寸变化的问题,在车辆丢失或被部分遮挡时,能准确而稳定地跟踪车辆,而且具有很好的实时性,满足了工程应用的需求。

关键词: 压缩跟踪算法, 实时跟踪, 目标检测, 卡尔曼滤波

Abstract: We employ compressive tracking (CT) algorithm to detect and track motion cars based on the characteristics of traffic monitoring video. The algorithm has strong robustness for greater camera change, motion vehicles scale change, and background change. However, the algorithm is easy to fail when a vehicle is sheltered. We therefore present a Kalman filter based modified CT algorithm to predict the motion trail of a sheltered vehicle. Kalman filter can track the trail of a target with CT algorithm, and effectively predict the trail of a sheltered target. Experimental results show that the algorithm can not only better solve the issue of motion vehicles scale change-precisely and stably track a vehicle when it disappears or is partly sheltered-,but also has better realtime performance. It thus satisfies the requirements of engineering application.

Key words: compressive tracking algorithm, realtime tracking, target detection, Kalman filter

中图分类号: 

  • TP391.41

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0