山东科学 ›› 2022, Vol. 35 ›› Issue (5): 112-121.doi: 10.3976/j.issn.1002-4026.2022.05.014
收稿日期:
2021-09-14
出版日期:
2022-10-20
发布日期:
2022-10-10
作者简介:
杨东(1987—),男,博士,副研究员,研究方向为产业生态学与环境管理学。E-mail: yangdong@qlu.edu.cn
基金资助:
YANG Dong(), DANG Meng-yuan, HAN Feng, SHI Feng
Received:
2021-09-14
Online:
2022-10-20
Published:
2022-10-10
摘要:
基于文献计量分析方法,借助CiteSpace和VOSviewer可视化分析软件,以定量与定性结合的方法,系统梳理了国内外物质存量的研究成果,综述了物质存量研究的知识基础、发展脉络和研究进展。研究发现:金属和建筑是物质存量研究的重要对象,并奠定了物质存量研究的知识基础;物质存量研究主题呈现出从单纯的物质核算到资源预测、社会经济代谢分析、温室气体减排和城市矿产开发等多研究主题交叉共融的局面;其研究方法不断丰富,生命周期评价、解耦分析和情景分析的引入,使得物质存量的研究范畴不断扩展;同时其研究内容不断地深化,涉及温室气体排放、循环经济、城市矿产、资源效率等可持续发展的内容。讨论了物质存量研究发展尚存在的问题,如关键数据的获取难度大、数据质量水平不一、实践指导性仍需加强等,认为今后应积极与其他学科融合发展,提高数据精度和强化决策支撑服务能力。
中图分类号:
杨东, 党梦园, 韩峰, 石峰. 基于文献计量分析的物质存量研究进展[J]. 山东科学, 2022, 35(5): 112-121.
YANG Dong, DANG Meng-yuan, HAN Feng, SHI Feng. Research progress of material stock based on bibliometric analysis[J]. Shandong Science, 2022, 35(5): 112-121.
表1
高被引作者及其机构统计"
序号 | 作者 | 机构 | 被引次数 | H指数 | 序号 | 作者 | 机构 | 被引次数 | H指数 |
---|---|---|---|---|---|---|---|---|---|
1 | Graedel T.E. | 耶鲁大学 | 1 865 | 66 | 8 | Pauliuk S. | 挪威科技大学 | 613 | 19 |
2 | Müller D.B. | 挪威科技大学 | 1 389 | 29 | 9 | Adachi Y. | 东京大学 | 574 | 21 |
3 | Bertram M. | 耶鲁大学 | 898 | 19 | 10 | Wang T. | 同济大学 | 526 | 25 |
4 | Daigo I. | 东京大学 | 766 | 21 | 11 | Hashimoto S. | 立命馆大学 | 486 | 20 |
5 | Gordon R.B. | 耶鲁大学 | 656 | 29 | 12 | Spatari S. | 耶鲁大学 | 436 | 20 |
6 | Tanikawa H. | 名古屋大学 | 618 | 21 | 13 | Brattebø H. | 挪威科技大学 | 379 | 22 |
7 | Matsuno Y. | 千叶大学 | 617 | 19 | 14 | Chen W.Q. | 中国科学院 | 301 | 25 |
[1] |
LANAU M, LIU G, KRAL U, et al. Taking stock of built environment stock studies: progress and prospects[J]. Environmental Science & Technology, 2019, 53(15): 8499-8515. DOI: 10.1021/acs.est.8b06652.
doi: 10.1021/acs.est.8b06652 |
[2] |
FISHMAN T, SCHANDL H, TANIKAWA H. The socio-economic drivers of material stock accumulation in Japan's prefectures[J]. Ecological Economics, 2015, 113: 76-84. DOI: 10.1016/j.ecolecon.2015.03.001.
doi: 10.1016/j.ecolecon.2015.03.001 |
[3] |
KUONG I H, LI J H, ZHANG J, et al. Estimating the evolution of urban mining resources in Hong Kong, up to the year 2050[J]. Environmental Science & Technology, 2019, 53(3): 1394-1403. DOI: 10.1021/acs.est.8b04063.
doi: 10.1021/acs.est.8b04063 |
[4] |
KRAUSMANN F, WIEDENHOFER D, LAUK C, et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use[J]. PNAS, 2017, 114(8): 1880-1885. DOI: 10.1073/pnas.1613773114.
doi: 10.1073/pnas.1613773114 pmid: 28167761 |
[5] |
LIU G, MÜLLER D B. Centennial evolution of aluminum in-use stocks on our aluminized planet[J]. Environmental Science & Technology, 2013, 47(9): 4882-4888. DOI: 10.1021/es305108p.
doi: 10.1021/es305108p |
[6] |
AUGISEAU V, BARLES S. Studying construction materials flows and stock: A review[J]. Resources, Conservation and Recycling, 2017, 123: 153-164. DOI: 10.1016/j.resconrec.2016.09.002.
doi: 10.1016/j.resconrec.2016.09.002 |
[7] | 李宜博. 北京市建筑存量演化及驱动因素分析[D]. 北京: 北京工业大学, 2019. |
[8] |
MÜLLER E, HILTY L M, WIDMER R, et al. Modeling metal stocks and flows: A review of dynamic material flow analysis methods[J]. Environmental Science & Technology, 2014, 48(4): 2102-2113. DOI: 10.1021/es403506a.
doi: 10.1021/es403506a |
[9] |
ALLESCH A, BRUNNER P H. Material flow analysis as a decision support tool for waste management: A literature review[J]. Journal of Industrial Ecology, 2015, 19(5): 753-764. DOI: 10.1111/jiec.12354.
doi: 10.1111/jiec.12354 |
[10] |
HUANG C L, VAUSE J, MA H W, et al. Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook[J]. Resources, Conservation and Recycling, 2012, 68: 104-116. DOI: 10.1016/j.resconrec.2012.08.012.
doi: 10.1016/j.resconrec.2012.08.012 |
[11] |
ZHI W, JI G D. Constructed wetlands, 1991—2011: A review of research development, current trends, and future directions[J]. The Science of the Total Environment, 2012, 441: 19-27. DOI: 10.1016/j.scitotenv.2012.09.064.
doi: 10.1016/j.scitotenv.2012.09.064 |
[12] |
杜文鹏, 闫慧敏, 杨艳昭. 自然资源资产负债表研究进展综述[J]. 资源科学, 2018, 40(5): 875-887. DOI: 10.18402/resci.2018.05.01.
doi: 10.18402/resci.2018.05.01 |
[13] |
CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI: 10.1002/asi.20317.
doi: 10.1002/asi.20317 |
[14] | 张璇, 苏楠, 杨红岗, 等. 2000—2011年国际电子政务的知识图谱研究:基于citespace和VOSviewer的计量分析[J]. 情报杂志, 2012, 31(12): 51-57. |
[15] |
VAN DER VOET E, KLEIJN R, HUELE R, et al. Predicting future emissions based on characteristics of stocks[J]. Ecological Economics, 2002, 41(2): 223-234. DOI: 10.1016/s0921-8009(02)00028-9.
doi: 10.1016/s0921-8009(02)00028-9 |
[16] |
KLEIJN R, HUELE R, VAN DER VOET E. Dynamic substance flow analysis: The delaying mechanism of stocks, with the case of PVC in Sweden[J]. Ecological Economics, 2000, 32(2): 241-254. DOI: 10.1016/s0921-8009(99)00090-7.
doi: 10.1016/s0921-8009(99)00090-7 |
[17] |
MELO M T. Statistical analysis of metal scrap generation: The case of aluminium in Germany[J]. Resources, Conservation and Recycling, 1999, 26(2): 91-113. DOI: 10.1016/s0921-3449(98)00077-9.
doi: 10.1016/s0921-3449(98)00077-9 |
[18] |
GRAEDEL T E, VAN BEERS D, BERTRAM M, et al. Multilevel cycle of anthropogenic copper[J]. Environmental Science & Technology, 2004, 38(4): 1242-1252. DOI: 10.1021/es030433c.
doi: 10.1021/es030433c |
[19] |
SPATARI S, BERTRAM M, GORDON R B, et al. Twentieth century copper stocks and flows in North America: A dynamic analysis[J]. Ecological Economics, 2005, 54(1): 37-51. DOI: 10.1016/j.ecolecon.2004.11.018.
doi: 10.1016/j.ecolecon.2004.11.018 |
[20] |
WANG T, MÜLLER D B, GRAEDEL T E. Forging the anthropogenic iron cycle[J]. Environmental Science & Technology, 2007, 41(14): 5120-5129. DOI: 10.1021/es062761t.
doi: 10.1021/es062761t |
[21] |
PAULIUK S, WANG T, MÜLLER D B. Steel all over the world: Estimating in-use stocks of iron for 200 countries[J]. Resources, Conservation and Recycling, 2013, 71: 22-30. DOI: 10.1016/j.resconrec.2012.11.008.
doi: 10.1016/j.resconrec.2012.11.008 |
[22] |
MÜLLER D B, WANG T, DUVAL B. Patterns of iron use in societal evolution[J]. Environmental Science & Technology, 2011, 45(1): 182-188. DOI: 10.1021/es102273t.
doi: 10.1021/es102273t |
[23] |
PAULIUK S, WANG T, MÜLLER D B. Moving toward the circular economy: The role of stocks in the Chinese steel cycle[J]. Environmental Science & Technology, 2012, 46(1): 148-154. DOI: 10.1021/es201904c.
doi: 10.1021/es201904c |
[24] |
GRAEDEL T E, ALLWOOD J, BIRAT J P, et al. What do we know about metal recycling rates?[J]. Journal of Industrial Ecology, 2011, 15(3): 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.
doi: 10.1111/j.1530-9290.2011.00342.x |
[25] |
TANIKAWA H, FISHMAN T, OKUOKA K, et al. The weight of society over time and space: A comprehensive account of the construction material stock of Japan, 1945—2010[J]. Journal of Industrial Ecology, 2015, 19(5): 778-791. DOI: 10.1111/jiec.12284.
doi: 10.1111/jiec.12284 |
[26] |
BERGSDAL H, BRATTEBØ H, BOHNE R A, et al. Dynamic material flow analysis for Norway's dwelling stock[J]. Building Research & Information, 2007, 35(5): 557-570. DOI: 10.1080/09613210701287588.
doi: 10.1080/09613210701287588 |
[27] |
MÜLLER D B. Stock dynamics for forecasting material flows:Case study for housing in The Netherlands[J]. Ecological Economics, 2006, 59(1): 142-156. DOI: 10.1016/j.ecolecon.2005.09.025.
doi: 10.1016/j.ecolecon.2005.09.025 |
[28] |
ORTLEPP R, GRUHLER K, SCHILLER G. Material stocks in Germany's non-domestic buildings: A new quantification method[J]. Building Research & Information, 2016, 44(8): 840-862. DOI: 10.1080/09613218.2016.1112096.
doi: 10.1080/09613218.2016.1112096 |
[29] |
MIATTO A, SCHANDL H, FORLIN L, et al. A spatial analysis of material stock accumulation and demolition waste potential of buildings: A case study of Padua[J]. Resources, Conservation and Recycling, 2019, 142: 245-256. DOI: 10.1016/j.resconrec.2018.12.011.
doi: 10.1016/j.resconrec.2018.12.011 |
[30] |
LEDERER J, GASSNER A, KERINGER F, et al. Material flows and stocks in the urban building sector: A case study from Vienna for the years 1990-2015[J]. Sustainability, 2019, 12(1): 300. DOI: 10.3390/su12010300.
doi: 10.3390/su12010300 |
[31] |
YANG W, KOHLER N. Simulation of the evolution of the Chinese building and infrastructure stock[J]. Building Research & Information, 2008, 36(1): 1-19. DOI: 10.1080/09613210701702883.
doi: 10.1080/09613210701702883 |
[32] |
GRAEDEL T E, BEERS D, BERTRAM M, et al. The multilevel cycle of anthropogenic zinc[J]. Journal of Industrial Ecology, 2005, 9(3): 67-90. DOI: 10.1162/1088198054821573.
doi: 10.1162/1088198054821573 |
[33] |
JOHNSON J, JIRIKOWIC J, BERTRAM M, et al. Contemporary anthropogenic silver cycle: A multilevel analysis[J]. Environmental Science & Technology, 2005, 39(12): 4655-4665. DOI: 10.1021/es048319x.
doi: 10.1021/es048319x |
[34] |
JOHNSON J, SCHEWEL L, GRAEDEL T E. The contemporary anthropogenic chromium cycle[J]. Environmental Science & Technology, 2006, 40(22): 7060-7069. DOI: 10.1021/es060061i.
doi: 10.1021/es060061i |
[35] |
RECK B K, MÜLLER D B, ROSTKOWSKI K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling[J]. Environmental Science & Technology, 2008, 42(9): 3394-3400. DOI: 10.1021/es072108l.
doi: 10.1021/es072108l |
[36] |
PAULIUK S, MÜLLER D B. The role of in-use stocks in the social metabolism and in climate change mitigation[J]. Global Environmental Change, 2014, 24: 132-142. DOI: 10.1016/j.gloenvcha.2013.11.006.
doi: 10.1016/j.gloenvcha.2013.11.006 |
[37] |
HU M M, VAN DER VOET E, HUPPES G. Dynamic material flow analysis for strategic construction and demolition waste management in Beijing[J]. Journal of Industrial Ecology, 2010, 14(3): 440-456. DOI: 10.1111/j.1530-9290.2010.00245.x.
doi: 10.1111/j.1530-9290.2010.00245.x |
[38] |
SARTORI I, BERGSDAL H, MÜLLER D B, et al. Towards modelling of construction, renovation and demolition activities: Norway's dwelling stock, 1900-2100[J]. Building Research & Information, 2008, 36(5): 412-425. DOI: 10.1080/09613210802184312.
doi: 10.1080/09613210802184312 |
[39] |
TANIKAWA H, HASHIMOTO S. Urban stock over time: Spatial material stock analysis using 4d-GIS[J]. Building Research & Information, 2009, 37(5/6): 483-502. DOI: 10.1080/09613210903169394.
doi: 10.1080/09613210903169394 |
[40] |
KLEEMANN F, LEDERER J, RECHBERGER H, et al. GIS-based analysis of vienna's material stock in buildings[J]. Journal of Industrial Ecology, 2017, 21(2): 368-380. DOI: 10.1111/jiec.12446.
doi: 10.1111/jiec.12446 |
[41] |
GUO Z, HU D, ZHANG F H, et al. An integrated material metabolism model for stocks of urban road system in Beijing, China[J]. Science of the Total Environment, 2014, 470/471: 883-894. DOI: 10.1016/j.scitotenv.2013.10.041.
doi: 10.1016/j.scitotenv.2013.10.041 |
[42] |
WU H Y, WANG J Y, DUAN H B, et al. An innovative approach to managing demolition waste via GIS (geographic information system): A case study in Shenzhen city, China[J]. Journal of Cleaner Production, 2016, 112: 494-503. DOI: 10.1016/j.jclepro.2015.08.096.
doi: 10.1016/j.jclepro.2015.08.096 |
[43] |
SCHEBEK L, SCHNITZER B, BLESINGER D, et al. Material stocks of the non-residential building sector: The case of the Rhine-Main area[J]. Resources, Conservation and Recycling, 2017, 123: 24-36. DOI: 10.1016/j.resconrec.2016.06.001.
doi: 10.1016/j.resconrec.2016.06.001 |
[44] |
HAN J, CHEN W Q, ZHANG L X, et al. Uncovering the spatiotemporal dynamics of urban infrastructure development: A high spatial resolution material stock and flow analysis[J]. Environmental Science & Technology, 2018, 52(21): 12122-12132. DOI: 10.1021/acs.est.8b03111.
doi: 10.1021/acs.est.8b03111 |
[45] |
MESTA C, KAHHAT R, SANTA-CRUZ S. Geospatial characterization of material stock in the residential sector of a Latin-American city[J]. Journal of Industrial Ecology, 2019, 23(1): 280-291. DOI: 10.1111/jiec.12723.
doi: 10.1111/jiec.12723 |
[46] |
LANAU M, LIU G. Developing an urban resource cadaster for circular economy: A case of Odense, Denmark[J]. Environmental Science & Technology, 2020, 54(7): 4675-4685. DOI: 10.1021/acs.est.9b07749.
doi: 10.1021/acs.est.9b07749 |
[47] |
HATTORI R, HORIE S, HSU F C, et al. Estimation of in-use steel stock for civil engineering and building using nighttime light images[J]. Resources, Conservation and Recycling, 2014, 83: 1-5. DOI: 10.1016/j.resconrec.2013.11.007.
doi: 10.1016/j.resconrec.2013.11.007 |
[48] |
WANG H Y, CHEN D J, DUAN H B, et al. Characterizing urban building metabolism with a 4D-GIS model: A case study in China[J]. Journal of Cleaner Production, 2019, 228: 1446-1454. DOI: 10.1016/j.jclepro.2019.04.341.
doi: 10.1016/j.jclepro.2019.04.341 |
[49] |
MAO R C, BAO Y, HUANG Z, et al. High-resolution mapping of the urban built environment stocks in Beijing[J]. Environmental Science & Technology, 2020, 54(9): 5345-5355. DOI: 10.1021/acs.est.9b07229.
doi: 10.1021/acs.est.9b07229 |
[50] |
ZELTNER C, BADER H P, SCHEIDEGGER R, et al. Sustainable metal management exemplified by copper in the USA[J]. Regional Environmental Change, 1999, 1(1): 31-46. DOI: 10.1007/s101130050006.
doi: 10.1007/s101130050006 |
[51] |
THIÉBAUD E, HILTY L, SCHLUEP M, et al. Where do our resources go? Indium, neodymium, and gold flows connected to the use of electronic equipment in Switzerland[J]. Sustainability, 2018, 10(8): 2658. DOI: 10.3390/su10082658.
doi: 10.3390/su10082658 |
[52] |
WANG M X, YOU X L, LI X, et al. Watch more, waste more? A stock-driven dynamic material flow analysis of metals and plastics in TV sets in China[J]. Journal of Cleaner Production, 2018, 187: 730-739. DOI: 10.1016/j.jclepro.2018.03.243.
doi: 10.1016/j.jclepro.2018.03.243 |
[53] |
MÜLLER D B, LIU G, LØVIK A N, et al. Carbon emissions of infrastructure development[J]. Environmental Science & Technology, 2013, 47(20): 11739-11746. DOI: 10.1021/es402618m.
doi: 10.1021/es402618m |
[54] |
KRAUSMANN F, WIEDENHOFER D, HABERL H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets[J]. Global Environmental Change, 2020, 61: 102034. DOI: 10.1016/j.gloenvcha.2020.102034.
doi: 10.1016/j.gloenvcha.2020.102034 |
[55] |
WATARI T, NANSAI K, NAKAJIMA K, et al. Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles[J]. Environmental Science and Technology, 2019, 53(20): 11657-11665. DOI: 10.1021/acs.est.9b02872.
doi: 10.1021/acs.est.9b02872 pmid: 31577427 |
[56] |
BAI J, QU J S, MARASENI T, et al. Spatial and temporal variations of embodied carbon emissions in China's infrastructure[J]. Sustainability, 2019, 11(3): 749. DOI: 10.3390/su11030749.
doi: 10.3390/su11030749 |
[1] | 季小妹,石峰,周艾文,范琳 . 基于物质流分析的山东省资源利用压力动态评价[J]. 山东科学, 2018, 31(1): 96-. |
[2] | 季小妹, 石峰, 贾永飞. 基于熵权法的山东省各地市政府环境作为评价[J]. J4, 2013, 26(5): 111-116. |
[3] | 汝绪伟,武红智,张青. 济南市城市生态承载力综合评价[J]. J4, 2013, 26(1): 87-92. |
|
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0