山东科学 ›› 2021, Vol. 34 ›› Issue (2): 81-89.doi: 10.3976/j.issn.1002-4026.2021.02.011
杨学杰1,陈文栋1,许荣浩2*,李宋林1,李建业1
YANG Xue-Jie1,CHEN Wen-Dong 1,XU Rong-Hao2*, LI Song-Lin1, LI Jian-Ye1
摘要: 针对输电线路及设备巡检效率低的问题,设计了一种基于Jetson-TX2的输电线路设备实时巡检系统。该系统包括基于YOLO v3算法的Jetson-TX2主控模块和云台相机控制模块。Jetson-TX2主控模块通过TensorRT加速库,对YOLO v3算法模型进行优化加速,完成视频流目标实时识别与定位;采用 PID算法控制云台(PTZ)相机,实现设备的高清图像采集。该系统对输电线路设备整体识别准确率达95%,可实现对视频流的实时检测,有效提高输电线路巡检效率。
中图分类号:
开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0