山东科学 ›› 2019, Vol. 32 ›› Issue (3): 85-89.doi: 10.3976/j.issn.1002-4026.2019.03.013

• 其他研究论文 • 上一篇    下一篇

有限域上斜λ-常循环码中互补对偶码的存在性及其性质

赵鹏程,李秀丽*   

  1. 青岛科技大学数理学院,山东 青岛 266061
  • 收稿日期:2018-08-12 出版日期:2019-06-20 发布日期:2019-06-01
  • 作者简介:赵鹏程(1995—),男,硕士生,研究方向为组合设计与编码理论。
  • 基金资助:
    国家自然科学基金(11671235);青岛市博士后基金(861605040007)

Existence and properties of complementary-dual codes in skew λ-cyclic codes over finite fields

ZHAO Peng-cheng, LI Xiu-li*   

  1. College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
  • Received:2018-08-12 Online:2019-06-20 Published:2019-06-01

摘要: 线性互补对偶码(LCD码)有良好的相关特性和正交特性,是编码理论研究的热点之一。在普通多项式环的基础上引入了自同构映射,得到有限域上的斜λ-常循环码,研究了有限域上斜λ-常循环码中互补对偶码的存在性及其性质,并且讨论了有限域上斜循环码中LCD码的计数问题。

关键词: 线性互补对偶码, 多项式环, 自同构映射, 斜λ-常循环码

Abstract: Linear complementary-dual codes (LCD codes) have good correlation and orthogonal properties, which are one of the hot topics in coding theory research. In this paper, automorphism maps were introduced based on the ordinary polynomial ring, and the skew λ-cyclic codes over finite fields were obtained. We studied the existence and properties of the complementary-dual codes in the skew λ-cyclic codes over finite fields. Moreover, the counting problem of LCD codes in the skew λ-cyclic codes over finite fields was also discussed.

Key words: linear complementarity-dual codes, polynomial rings, automorphism mapping, skew λ-cyclic codes

中图分类号: 

  • O236.2

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0