山东科学 ›› 2018, Vol. 31 ›› Issue (1): 116-.doi: 10.3976/j.issn.1002-4026.2018.01.019

• 其他研究论文 • 上一篇    下一篇

基于流形正则协同训练模型的行为识别方法

刘向阳, 李阳*, 姜树明, 王帅   

  1. 山东省科学院情报研究所,山东 济南 250014
  • 收稿日期:2017-08-04 出版日期:2018-02-20 发布日期:2018-02-20
  • 作者简介:刘向阳(1970—),男,高级工程师,研究方向为公共安全和信息技术研究。
  • 基金资助:

    山东省自然科学基金(ZR2014YL010);山东省科技发展计划(2014GSF120018)

Manifold-regularized co-training model for behavior recognition

LIU Xiang-yang, LI Yang*, JIANG Shu-ming,WANG Shuai   

  1. Information Research Institute,Shandong Academy of Sciences,Jinan 250014, China
  • Received:2017-08-04 Online:2018-02-20 Published:2018-02-20

摘要:

本文提出了基于流形正则协同训练模型的行为识别方法。该方法将拉普拉斯正则引入到协同训练模型中,利用大量未标记样本数据从不同视角数据上训练出两个分类器,两者之间互换未知信息并更新分类器,以提高识别精确度。在动作数据集UCF-iphone上进行了大量的实验验证算法的有效性,结果表明,引入拉普拉斯正则能有效地提高动作识别精确度。

关键词: 行为识别, 协同训练, 拉普拉斯正则, 半监督学习, 流形学习

Abstract:

In this paper, a novel semi-supervised learning algorithm named Laplacian-regularized co-training(LapCo) was proposed. This method introduced Laplacian regularization to co-training model, and a large number of unlabeled sample data were used to train two classifiers from different view data, which could exchange unknown information between the two and update classifier to improve the recognition accuracy. In order to verify the effectiveness of the proposed algorithm, a large number of experiments were done on the action dataset UCF-iphone. The experimental results show that our proposed Laplacianregularized co-training model can effectively improve the accuracy of behavior recognition.

Key words: semi-supervised learning, co-training, Laplacian regularization, behavior recognition, manifold learning

中图分类号: 

  • TP391

开放获取 本文遵循知识共享-署名-非商业性4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时表明是否对原文作了修改,不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0